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Abstract

In Chapter 1, we predicted disease risk by transformation models in the presence of

missing subgroup identifiers. When a discrete covariate defining subgroup member-

ship is missing for some of the subjects in a study, the distribution of the outcome

follows a mixture distribution of the subgroup-specific distributions. Taking into

account the uncertain distribution of the group membership and the covariates, we

model the relation between the disease onset time and the covariates through trans-

formation models in each sub-population, and develop a nonparametric maximum

likelihood based estimation implemented through EM algorithm along with its in-

ference procedure. We further propose methods to identify the covariates that have

different effects or common effects in distinct populations, which enables parsimo-

nious modeling and better understanding of the difference across populations. The

methods are illustrated through extensive simulation studies and a real data example.

In Chapter 2, we discussed a generalized partially linear single index model with

measurement error, instruments and binary response. Instrumental variables are im-

portant elements in studying many errors-in-variables problems. We use the relation

between the unobservable variables and the instruments to devise consistent estima-

tors for partially linear generalized single index models with binary response. We

establish the consistency, asymptotic normality of the estimator and illustrate the

numerical performance of the method through simulation studies and a data exam-

ple. Despite the connection to Xu et al. (2015) in its general layout, the mathematical

derivations are much more challenging in the context studied here.

In Chapter 3, we investigated the errors in covariates issues in a generalized par-
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tially linear model. Different from the usual literature (Ma & Carroll 2006), we

consider the case where the measurement error occurs to the covariate that enters

the model nonparametrically, while the covariates precisely observed enter the model

parametrically. To avoid the deconvolution type operations, which can suffer from

very low convergence rate, we use the B-splines representation to approximate the

nonparametric function and convert the problem into a parametric form for opera-

tional purpose. We then use a parametric working model to replace the distribution

of the unobservable variable, and devise an estimating equation to estimate both

the model parameters and the functional dependence of the response on the latent

variable. The estimation procedure is devised under the functional model framework

without assuming any distribution structure of the latent variable. We further de-

rive theories on the large sample properties of our estimator. Numerical simulation

studies are carried out to evaluate the finite sample performance, and the practical

performance of the method is illustrated through a data example.
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Chapter 1

Predicting disease Risk by Transformation

Models in the Presence of Missing Subgroup

Identifiers1

1.1 Introduction

Biomedical studies can lead to mixture data. When a discrete covariate defining

subgroup membership is missing for some of the subjects in a study, the distribution

of the outcome is a mixture of the subgroup-specific distributions. One example is the

kin-cohort study Wacholder et al. (1998) with the goal of estimating the cumulative

risk of disease for mutation carriers Khoury et al. (1993). However, mutation status

is only collected in the initial sample of participants, referred as probands, not in

their relatives. For example, genetic mutation status is not available for deceased

relatives or those who have not undergone genetic testing due to resource constraints.

The disease phenotype information for such relatives is available from other sources,

such as interviewing the proband in a family Marder et al. (2003). For a late-onset

disease, such as Parkinson’s disease (PD), parents of study participants are often

deceased. Therefore even though age-at-onset of PD is provided by a family member,

no genotyping can be performed on deceased parents. When estimating the disease

risk distribution for mutation carriers and non-carriers using these relatives’ disease

onset information, the unknown mutation status needs to be accounted for by using

1Wang Q., Ma, Y., and Wang, Y. 2017. Statistica Sinica. 27, 4, p. 1857-1878 22 p.
Reprinted here with permission of publisher.

1



www.manaraa.com

the distribution of mutation status in such relatives as estimated from living relatives

who provide blood sample Wang et al. (2012), Ma & Wang (2014).

We consider estimating the subgroup-specific distribution for outcomes that are

subject to censoring and with missing subgroup identifiers. The nonparametric mod-

els in Wacholder et al. (1998), Wang et al. (2012), and Ma & Wang (2014) do not

include any covariates other than the mutation status. We consider how to include

covariates that can have identical or different effects across subgroups. Popular semi-

parametric models for censored outcomes, such as the Cox proportional hazards

model, accelerated failure time model, and transformation model have been stud-

ied extensively in the literature, but less so in a mixture data setting. Recently,

Altstein & Li (2013) proposed a latent subgroup analysis for a semiparametric accel-

erated failure time model in a clinical trials setting. Our work differs from Altstein

& Li (2013) in that the distribution of the subgroup identifiers is available in our

problem, and we assume a semiparametric transformation model in each subgroup.

A transformation model is applied to analyze neurological disorder data (e.g, Hunt-

ington’s disease [HD] as in our motivating study) due to its useful biological and

clinical interpretations; see for example Zhang et al. (2012).

We propose a semiparametric transformation model for mixture data. Compared

to parametric transformation model in the literature Zhang et al. (2012), we allow

for greater flexibility to account for subgroup heterogeneity. This is achieved in our

model through characterizing the outcome in each subpopulation using a different

distribution, indexed by both parameters and error distributions. They can also have

both as shared covariate effect and/or a subgroup-specific covariate effect. In addi-

tion, we assume an unknown transformation to avoid the difficulty of specifying a

parametric transformation. When assuming a homogeneous covariate effect, we ac-

count for a missing population identifier by taking advantage of the distribution of the

mixing proportion and using a weighted least-square type estimator, which greatly

2
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simplifies the procedure. When we assume a subgroup-specific covariate effect, the

weighted least-square estimator no longer applies, and we use the EM algorithm. We

have performed extensive simulation studies to examine performance of the proposed

approach and applied it to estimating the survival function for HD mutation carri-

ers in a large genetic epidemiology study Dorsey & The Huntington Study Group

COHORT Investigators (2012).

1.2 Modeling, Estimation, and Asymptotic Properties

Assume there are n observations from p populations. Here p is usually determined

by the research purpose. For genetic studies, populations are defined by mutation

carrier status. Throughout, we assume p is pre-determined. Denote the data from

the ith observation as Oi = (qi,xi, zi, yi, δi), where qi is a length p vector, with the

jth entry qij being the probability that the ith observation is randomly sampled from

the jth population. We also allow a subject’s population membership to be known

by allowing qi to be a vector with 1 in one component and zero in all others. Let ti

be the time to event and ci be the censoring time, yi = min(ti, ci), and δi = I(ti ≤ ci).

Let xi denote the covariate vector that has a common effect on the event time across

different populations, while zi denotes the covariate vector that has a different effect

in different populations. For simplicity, we sort the data so that yi ≤ yk for all i < k.

1.2.1 Model

For the jth population, the linear transformation model we propose has the form

H(T ) = −XTβ − ZTαj + εj. (1.1)

Here H is an unknown, monotonically increasing function and, without loss of gen-

erality, we assume H(0) = −∞. We assume εj is independent of X, Z, and has

a known population-specific distribution fj(εj). Here, in each population, this is a

3
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classical linear transformation model, in which the baseline population distribution

can be heterogeneous due to the different choices of fj. Selection of fj for each pop-

ulation can be based on scientific or biological knowledge of a particular population.

The covariate effect is also allowed to vary, reflected in the population-specific αj. By

including the term xTβ, we also allow the possibility that some covariates have a ho-

mogeneous effect across populations. We develop a test to assess whether a covariate

exhibits evidence of deviation from a homogeneous effect model.

Let θ = (βT,αT
1 , . . . ,α

T
p )T, Φ(t) = exp{H(t)}, and φ(t) = exp{H(t)}h(t). The

conditional distribution function of the ith relative from (1.1) is then

f(yi, δi | xi, zi;θ,Φ, φ)

=
h(yi)

n∑
j=1

qijfj{H(yi) + xT
i β + zT

i αj}

δi

×

1−
n∑
j=1

qijFj{H(yi) + xT
i β + zT

i αj}

1−δi

= φ(yi)δiΨ(Oi;θ,Φ),

where Φ is a function that depends only on θ and Φ, but not on φ. The model can

not be viewed as a transformation model, hence existing estimation procedures do

not apply. To ensure identifiability, we require that the qi variable takes m different

vector values, denoted u1, . . . ,um, so that the matrix (u1, . . . ,um) has rank p. We

point out that the identifiability here excludes any permutation. This identifiability

is stronger than that up to a permutation in most classical mixture models Holzmann

et al. (2006). We can achieve the stronger form of identifiability because the mixture

probabilities, while different for different observations, are known.

4
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1.2.2 Estimation

We propose a nonparametric maximum likelihood estimator (NPMLE) to estimate θ

and Φ(·). Specifically, we obtain θ̂ and Ĥ = log(Φ̂) through maximizing

l(θ,Φ) =
n∑
i=1

δilog{φ(yi)}+
n∑
i=1

log{Ψ(Oi;θ,Φ)}

with respect to θ and Φ, where we restrict Φ, hence H, to be a piecewise constant

non-decreasing function with non-negative jumps only at the observed event times.

Following existing literature Wacholder et al. (1998), Wang et al. (2012), We exclude

the probands from the analysis sample and the likelihood to protect against poten-

tial ascertainment bias from unknown sources that may be difficult to adjust (e.g.,

convenience sample of patients visiting a clinic). Given the mutation carrier status,

we also assume the relatives’ phenotypes are conditionally independent of probands’

phenotypes, which is an assumption satisfied by a monogenic disorder with a known

genetic cause controlled in the model (e.g., HD in our application).

Although conceptually simple, the computation of NPMLE is not straightforward

because the maximization is with respect to not only γ, but also Φ(·) at all the yi’s

that are not censored. As sample size increases, the potential number of parameters

increases as well, hence the computational problem does not simplify in the asymp-

totic sense. To overcome the computational difficulty, we use an EM algorithm. To

this end, we first use Laplace transformation in each population to obtain

1− Fj(x) =
∫ ∞

0
exp(−rjex)ψj(rj)drj,

where ψj(·) is the inverse Laplace transformation of 1 − Fj(x) as a function of ex,

5
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consequently

1−
n∑
j=1

qijFj{H(yi) + xT
i β + zT

i αj}

=
n∑
j=1

qij

∫ ∞
0

exp{−rijeH(yi)+xT
i β+zT

i αj}ψj(rij)drij

=
n∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)exT
i β+zT

i αj}ψj(rij)drij

and

h(yi)
n∑
j=1

qijfj{H(yi) + xT
i β + zT

i αj}

=
n∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)exT
i β+zT

i αj}φ(yi) exp(xT
i β + zT

i αj)rijψj(rij)drij.

The ith observation here is Oi, let D = (O1, · · · ,On). Let 0 < t1 < · · · <

tK < τ be the distinct event times, and write the quantities to be estimated as

γ = {θT, H(t1), . . . H(tK)}T. The log-likelihood is then l(γ; D) = ∑n
i=1 li(γ; Oi),

where

li(γ; Oi) = log
n∑
j=1

∫ ∞
0
{φ(yi)rij exp(xT

i β + zT
i αj)}δi

× exp{−rijΦ(yi)exT
i β+zT

i αj}qijψj(rij)drij.

We take advantage of this special data structure and view the population identifiers

G = (G1, . . . , Gn) and r = (r1, . . . , rn) as the missing variable, where Gi = Ij rep-

resents that the ith observation is a random sample from the jth population, and

ri = (ri1, . . . , rip)T is the introduced random effects to facilitate computation. Then

the complete data loglikelihood is l(γ | D,G, r) = ∑n
i=1 li(γ | Oi, Gi, ri), where

li(γ | Oi, Gi = Ij, rij)

= log
[
{φ(yi)rij exp(xT

i β + zT
i αj)}δi exp{−rijΦ(yi)exT

i β+zT
i αj}

]
= δilog{φ(yi)rij}+ δi(xT

i β + zT
i αj)− rijΦ(yi)exT

i β+zT
i αj .

6
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This is a Cox model log-likelihood. Thus, in the E-step, we calculate

Q(γ,γ(u),D) ≡ Eγ(u){l(γ | D,G, r) | D} =
n∑
i=1

∫ ∑n
j=1 li(γ | Oi,Gi = Ij, rij)a(u)

ij drij∫ ∑n
j=1 a

(u)
ij drij

,

where

a
(u)
ij = {φ(u)(yi)rij exp(xT

i β
(u) + zT

i α
(u)
j )}δi exp{−rijΦ(u)(yi)exT

i β
(u)+zT

i α
(u)
j }qijψj(rij).

In the M-step, we maximize Q(γ,γ(u),D) with respect to γ subject to the constraints

0 < H(t1) < · · · < H(tK) ≤ 1 to obtain γ(u+1). Specifically, taking derivative with

respect to γ, we obtain estimating equations

0 =
n∑
i=1

∫ ∑n
j=1{δixi − xirijΦ(yi)exT

i β+zT
i αj}a(u)

ij drij∫ ∑n
j=1 a

(u)
ij drij

=
n∑
i=1

δixi − xiΦ(yi)exT
i β

∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

.

For j = 1, . . . , p,

0 =
n∑
i=1

∫
(δizi − zirijeH(yi)+xT

i β+zT
i αj)a(u)

ij drij∫ ∑n
j=1 a

(u)
ij drij

=
n∑
i=1

δizi
∫
a

(u)
ij drij − ziΦ(yi)exT

i β+zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

.

For k = 1, . . . , K,

0 =
∑
yi≥tk

∫ ∑n
j=1

{
I(yi=tk)

φk
− rijexT

i β+zT
i αj

}
a

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

= 1
φk
−
∑
yi≥tk

exT
i β
∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

.

This yields

φk =
 ∑
yi≥tk

exT
i β
∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

−1

,

or in general

φ(yk;β,α) = δk

 n∑
i=1

I(yi ≥ yk)exT
i β
∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

−1

(1.2)

Φ(yi;β,α) =
n∑
k=1

I(yk ≤ yi)δk

 n∑
i=1

I(yi ≥ yk)exT
i β
∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

−1

.

7
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Plugging into the estimating equation for β,α1, . . . ,αp, we obtain

n∑
i=1

δixi − xiΦ(yi;β,α)exT
i β

∑n
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

= 0 (1.3)

n∑
i=1

δizi
∫
a

(u)
ij drij − ziΦ(yi;β,α)exT

i β+zT
i αj

∫
rija

(u)
ij drij∫ ∑n

j=1 a
(u)
ij drij

= 0

at j = 1, . . . , p.

We solve the estimating equations (1.3) to obtain β̂(u+1)
, α̂(u+1), j = 1, . . . , p, and

then substitute into (1.2) to obtain Φ(u+1)(t), and hence alsoH(u+1)(t) = log{Φ(u+1)(t)}.

The procedure iterates between the E-step and the M-step until convergence.

We point out that, although the functions ψj(r)’s are left as unknown, we can

still calculate
∫
a

(u)
ij drij and

∫
rija

(u)
ij drij in the M-step. Specifically,

∫
a

(u)
ij drij

= qij {1− Fj(t)}1−δi
{
h(u)(yi)fj(t)

}δi ∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

,∫
rija

(u)
ij drij

=
{
e−tqijfj(t)

}1−δ [
e−tqijh

(u)(yi){fj(t)− f ′j(t)}
]δ ∣∣∣∣

t=H(u)(yi)+xT
i β

(u)+zT
i α

(u)
j

,

as shown in Appendix B.1, by taking advantage of the Laplace/inverse Laplace trans-

form relation. In fact, even if an explicit form of ψj(r) can be obtained, it is not neces-

sary to go through the calculation because ψj(r) itself is not needed. Finally, because

ψj is defined as the inverse Laplace transform of a bounded function, it always exists

for any ε distribution.

1.2.3 Theoretical properties

Although (1.1) is not a transformation model, under the list of conditions imposed

in Appendix B.2, it can be cast into the general framework, Zeng & Lin (2007). To

this end, we can verify that our Conditions (a), (b), (c) lead to their conditions (C1),

(C2), (C3), respectively. Our Conditions (d) and (e) jointly ensure their conditions

8
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(C4) and (C8). Our Condition (f) leads to their condition (C6), and our Condition

(g) leads to their conditions (C5), (C7). These are mild conditions mainly imposing

identifiability, sufficient smoothness, and boundedness of various functions; They are

usually satisfied in practice. Having verified the regularity conditions C1-C7 of Zeng

& Lin (2007), we can use their results to obtain the asymptotic properties of the

NPMLE in the linear transformation model in the mixture data setting. We state

the results in Theorem 1 and provide the proof in Appendix B.3.

Theorem 1. Let θ0,Φ0 denote the true value of θ,Φ, and write Φ = {Φ(t1),Φ(t2), . . . ,

Φ(tK)}T. Under conditions (a)-(g) of Appendix B.2, θ̂, Φ̂ are consistent, and have the

asymptotic property that
√
n(θ̂−θ, Φ̂−Φ) converges weakly to a zero mean Gaussian

process. Then, for any function a1(s) with bounded total variation and any vector a2,
√
n
∫
a1(s)d{Φ̂(s)−Φ(s)}+

√
naT

2 (θ̂−θ) converges to a zero mean normal distribution

whose variance can be approximated by

v{a1(·),a2} ≡ −(aT
1 ,aT

2 )
{

∂2l(Φ̂, θ̂)
∂(ΦT,θT)∂(ΦT,θT)T

}−1

(aT
1 ,aT

2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

1.2.4 Inference

The main interest is often in the covariate effects described by θ. In such cases, we

can perform inference using the results of a profiling procedure: at any θ, we use

the same EM algorithm to calculate Ĥ(T,θ) except that we hold θ fixed, and then

calculate the information matrix using numerical derivatives. This is a simplification

because it bypasses the need to invert a potentially high-dimensional matrix. For

9
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example, the α100% confidence interval for the jth component of θ, θj is

θ̂j ± Z(1+α)/2

[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ2

j

∣∣∣
θ=θ̂

]−1/2

≈ θ̂j ± Z(1+α)/2

[
n∑
i=1

−li{θ̂ + bej, Ĥ(t1, θ̂ + bej), . . . , Ĥ(tK , θ̂ + bej)}
b2

+2li{θ̂, Ĥ(t1, θ̂), . . . , Ĥ(tK , θ̂)}
b2

− li{θ̂ − bej, Ĥ(t1, θ̂ − bej), . . . , Ĥ(tK , θ̂ − bej)}
b2

]−1/2

,

where Z(1+α)/2 is the (1 + α)/2 quantile of the standard normal distribution, li is

the likelihood evaluated at the ith observation, ej is the vector with zero components

everywhere except the jth component being 1, and b is a small number that facilitates

the numerical derivative.

Likewise, for hypothesis testing of the form H0 : θ = c, we can construct the test

statistic

Z =
[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ∂θT

∣∣∣
θ=θ̂

]1/2

(θ − c)

≈
[(

n∑
i=1

−li{θ̂ + bej + bek, Ĥ(t1, θ̂ + bej + bek), . . . , Ĥ(tK , θ̂ + bej + bek)}
4b2

+ li{θ̂ + bej − bek, Ĥ(t1, θ̂ + bej − bek), . . . , Ĥ(tK , θ̂ + bej − bek)}
4b2

+ li{θ̂ − bej + bek, Ĥ(t1, θ̂ − bej + bek), . . . , Ĥ(tK , θ̂ − bej + bek)}
4b2

− li{θ̂ − bej − bek, Ĥ(t1, θ̂ − bej − bek), . . . , Ĥ(tK , θ̂ − bej − bek)}
4b2

)
jk

1/2

×(θ − c),

and note that Z is approximately a standard multivariate normal random variable

under H0. Here, we use the notation (Ajk) to denote the square matrix A with size

the length of θ and (j, k) entry Ajk.

10
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1.3 Homogeneous and no covariate effect model

When either β or αj does not appear in (1.1), the model is more restrictive and the

computation simplifies. If β does not appear, then there is no homogeneous covariate

effect in the transformation model. In terms of estimation, the procedures follows

the same line with some minor simplifications. However, if αj does not appear, (1.1)

greatly simplifies and can be treated quite differently, as we now explain.

The common-effect covariate effect model for the jth population is

H(T ) = −XTβ + εj,

where all the components in the model retain the same interpretation as in (1.1). The

implication of the model is that the heterogeneity between subpopulations is due to

the different variability of measurement errors, but not the heterogeneous effect of

covariates. The conditional distribution is then simplified to

f(Y,∆ | X) =
h(y)

n∑
j=1

qjfj{H(y) + xTβ}

δ 1−
n∑
j=1

qjFj{H(y) + xTβ}

1−δ

=
[
h(y)qTf{H(y) + xTβ}

]δ [
1− qTF

{
H(y) + xTβ

}]1−δ
,

where f = (f1, . . . , fp)T, F = (F1, . . . , Fp)T, and h(y) ≡ H ′(y), because the same

transformation H and the same parameter β are assumed across all p populations.

The population difference is only reflected in the distribution of εj, which is assumed

to be fj. We can however still use the different fj’s of the model to account for

unexplained residual population heterogeneity, for example, different variances.

As before, estimating the distribution in each population is equivalent to estimat-

ing H and β. As the qi’s have m ≥ p different vector values u1, . . . ,um, assign the

n observations to these m groups according to their q values. Assume there are, re-

spectively, r1, . . . , rm observations in each group. In group k, we can view the model

as a transformation model with the same transformation H, the same parameter β,

but a new distribution for ε, which has the mixture form uT
k f(ε). Thus, we can use

11
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the existing estimation method for transformation models to obtain the estimators

of H and β, using exclusively the kth group data. Denote the resulting estimators

as Ĥk and β̂k. We can then take the weighted average to obtain the final estimator

Ĥ(t) = ∑m
k=1wk(t)Ĥk(t) and β̂ = ∑m

k=1 wkβ̂k. To be consistent with the estimation

in the general model (1.1), we use the NPMLE proposed by Zeng & Lin (2006). Thus,

we obtain β̂k, Ĥk via maximizing

lk(H,β) = n−1
n∑
i=1

I(qi = uk)
(
δilog

[
h(yi)uT

k f{H(yi) + xT
i β}

]
+(1− δi)log

[
1− uT

kF
{
H(yi) + xT

i β
}])

with respect to β and H. Here, we restrict H(y) to be a piecewise constant non-

decreasing function with nonnegative jumps only at the yi’s where qi = uk and

δi = 1. We write these jump points t1, . . . , tK , and write Hk = {H(t1), . . . , H(tK)}T.

Zeng & Lin (2006) showed that the resulting β̂k, Ĥk are consistent, and that
√
n(β̂k−

β, Ĥk−H) converges weakly to a zero mean Gaussian process. Thus, for any function

a1(s) with bounded total variation and any vector a2,
√
n
∫
a1(s)d{Ĥk(s)−H(s)}+

√
naT

2 (β̂k − β) converges to a zero mean normal distribution whose variance can be

approximated by

vk{a1(·), a2} ≡ −(aT
1 , aT

2 )
{

∂2lk(Ĥk, β̂k)
∂(HT

k ,β
T)∂(HT

k ,β
T)T

}−1

(aT
1 , aT

2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

It remains to determine the choice of weights wk. Because the estimation in

different group is based on different subjects, they are independent. Hence the optimal

weights are proportional to the inverse of the variance of the estimators. The optimal

weights for Ĥ(t) are then wk(t) = vk{I(s ≤ t),0}−1/[∑m
k=1 vk{I(s ≤ t),0}−1]. wk is a

diagonal matrix with the jth diagonal element wkj = vk(0, ej)−1/{∑m
k=1 vk(0, ej)−1}.

In practice, this may not work well since it relies on asymptotic results. Based on

prior work in Ma &Wang (2014), a simple choice of wk(t) = wk = r−1
k has satisfactory

performance.

12
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Because the within group NPMLE already guarantees the monotonicity of each

Ĥk, the final weighted average estimator for Ĥ is monotone. The asymptotic property

of Ĥ and β is standard:
√
n(β̂−β, Ĥ−H) converges weakly to a zero mean Gaussian

process. Then, for any function a1(t) with bounded total variation and any vector

a2,
√
n
∫
a1(s)d{Ĥ(s) − H(s)} +

√
naT

2 (β̂ − β) converges to a zero mean normal

distribution whose variance can be approximated with

v{a1(·), a2} ≡
m∑
k=1

vk{a1(·)wk(·),wka2}

where t1, . . . , tK are the observed event times.

Testing whether population heterogeneity in the covariate effects is present in

(1.1) is equivalent to testing α1 = α2 = · · · = αp. This can be written as testing

Aθ = 0, A a (p − 1)dz × (dx + pdz) block matrix in which the (j, j) block is I and

the (2, j) block is −I for j = 3, . . . , p + 1. All other blocks are zero. Based on the

asymptotic results in Section 3.2, we can conveniently use a Wald test: under Φ0,

n(Aθ)TV−1Aθ has χ2 distribution with (p− 1)dz degrees of freedom, where

V = −(0(p−1)dz×K ,A)
{

∂2l(Φ̂, θ̂)
∂(ΦT,θT)∂(ΦT,θT)T

}−1

(0(p−1)dz×K ,A)T.

When no covariate is included in the model, β does not appear. The procedure

can then be directly applied with the simplification of deleting all the steps concerning

estimating β: we estimate H(·) from each of the m groups, then combine the results

via a weighted average. This is similar to the approaches in Wacholder et al. (1998)

and in Ma & Wang (2014), except that the estimation of H(·) in each group is carried

out via MLE instead of least squares, and the weight selection is different from that

in Wacholder et al. (1998).

1.4 Simulation Studies

We performed six sets of simulation studies to demonstrate the performance of the

proposed method for the transformation model in the mixture data context. We
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present three of the simulation studies here and relegate the remaining three to Ap-

pendix B.4. Our first set of simulations contain homogeneous covariate effects. We

generated data using p = 2, without αj, and X a bivariate random vector. The first

component of X was a binary variable, taking values 1 or 0 each with probability 0.5,

the second component was uniform on -1 to 1. The transformation H was a loga-

rithm function. We set f1 to be the extreme value distribution, f2 to be the logistic

distribution. The censoring distribution was exponential, resulting in an overall cen-

soring rate about 25%. The results are in the first block of Table 1.1 and upper-left

plot of Figure 1.1. For comparison, we also did the estimation treating the homoge-

neous effect as heterigeneous, and estimated β1, β2 as α11, α21, α12, α22 instead. The

results are in the second block of Table 1.1 and upper-right plot of Figure 1.1. These

estimations are still consistent, yet the variability roughly doubled.

The second set of simulations studied heterogeneous covariate effects. It included

αj, but not β. We generated data using p = 2. Z was of the same structure as X in

the first simulation for the first two terms and an intercept term for the third term.

We kept H the same as in the first simulation. Usually, in transformation models,

the intercept term is not identifiable. In our case, the difference of the intercepts

in different populations is identifiable, and hence was estimated. Here we set f1 to

be standard normal and f2 to be a t distribution with 5 degrees of freedom. The

censoring distribution was still exponential to achieve a 20% overall censoring rate.

Results are in the second block of Table 1.1 and lower-left plot of Figure 1.1.

Our third simulation included both β and αj. We generated data using p = 2.

X is bivariate with the first component either 1 or 0 with equal probability, and the

second component a standard normal. Z was a uniform covariate on [-1 1] and a

constant 1 to capture the intercept. The true H was still the log transformation. We

took both f1, f2 to be normal with mean zero, but the second population had four

times the variance as the first. The censoring distribution was exponential yielding
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a 20% overall censoring rate. The results are in the third block of Table 1.1 and the

lower-right plot of Figure 1.1.

The simulation studies suggest that the proposed method has satisfactory finite

sample performance: the parameter estimation yields small biases in all three simula-

tions, measured by the mean and median of the 1000 estimates; Inference results are

precise, in that the sample standard deviation from the 1000 simulations are closely

matched by the average and the median of the 1000 estimated standard deviations

calculated from the asymptotic results. The overall distribution of the estimated

parameters are close to normal, as indicated by the empirical coverage of the 95%

confidence intervals, which are close to their nominal levels. The estimation of the

transformation function H, as shown in Figure 1.1, is within expectations. Overall,

the average of the curve estimation approximately overlays the true H curve, while

the 95% confidence bands have better performance than the typical nonparametric

curve estimation. This is because H is estimated as the root-n rate, instead of the

usual nonparametric rate. We also tired different transformations than H, with the

overall performance similar. The details of these simulations are in Appendix B.4.

1.5 Application to Huntington’s Disease Study

HD is the most prevalent monogenic neurodegenerative disorder caused by expan-

sion of C-A-G repeats at the HD gene on chromosome 4 MacDonald et al. (1993).

Typically neurological, cognitive, and physical symptoms begin to exhibit around

30-50 years of age for affected individuals, and eventually death is from pneumonia,

heart failure, or other complications 15-20 years after the diagnosis Foroud et al.

(1999). The subjects analyzed here were recruited in the Cooperative Huntington’s

Observational Research Trial (COHORT, Dorsey & The Huntington Study Group

COHORT Investigators 2012), an epidemiological study of the natural history of HD.

The probands were recruited primarily at academic research centers from 50 sites in
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the United States, Canada, and Australia. Probands were either clinically diagnosed

with HD or the individuals who pursued HD genetic testing and carried a mutation

but who were not clinically diagnosed. The initial probands underwent clinical ex-

amination and genotyping for HD mutation, and reported family history information

on their first-degree relatives. The relatives were not genotyped because there was

no resource for in-person collection of blood samples. Thus the relatives’ HD mu-

tation status was unknown, while the distribution of their mutation status could be

estimated from the pedigree structure and the probands’ carrier status. The full de-

tails of the COHORT study design are described in Dorsey & The Huntington Study

Group COHORT Investigators (2012) and in Wang et al. (2012).

There were 4105 subjects included in the COHORT analysis, and they were either

mutation carriers or not, hence p = 2. The heterogeneous covariate effect model (1.1)

was used to study the effect of several covariates on mortality in HD mutation carriers

where, for carriers, f1 was normal with mean zero standard deviation 0.2, and for

non-carriers, f2 was 0.2T5, with T5 a student t with 5 degrees-of-freedom. The main

research interest is to predict age at death based on CAG repeats length, adjusting

for gender, proband’s HD clinical diagnosis status and a relative’s relationship to

the probands. We assumed all covariates to have differential effect in each mutation

group to allow for maximal flexibility. The covariates included in the model were:

CAG repeats length at the HD gene, gender, and proband’s HD diagnosis status.

The results are reported in Table 1.2. As expected, the effects of CAG repeats

length has a significant effect on age-at-death with an estimated effect of −0.76 (SE:

0.09, p-value< 0.001). The results suggest that if all covariates are the same, the

subjects with one unit CAG longer repeat are expected to have a 2.38 years shorter

lifespan. Here 2.38 is calculated as the average of Ĥ−1(U) − Ĥ−1(U − 0.76) for a

random U , where Ĥ is the estimated transformation function and is close to a linear

function (See Figure 1.2). This finding is consistent with the clinical literature which
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indicates an inverse association between CAG repeats length and HD age at diagnosis

and death, Foroud et al. (1999), Langbehn et al. (2004). Proband’s HD diagnosis also

has a significant effect after adjusting for CAG repeats and other covariates: having

a positive HD diagnosis in a family member is associated with an earlier mean age-

at-death in carrier, potentially due to other shared familial risk factors.

The estimated transformation H(·) and its bootstrap confidence interval are pre-

sented in Figure 1.2. The nonparametric function suggests that a linear transforma-

tion may fit the data adequately and, under a parametric approximation, predictions

formula for the age-at-death in a mutation carrier subject can be obtained. The

approximated linear function is Ĥ(t) = −24.35 + 0.32t, see Figure 1.3.

A limitation of our analysis is that probands data were not included to protect

against potential bias resulting from unknown sources in the COHORT study that did

not use a population-based ascertainment scheme for probands. When the proband

ascertainment is population-based, for example, probands are randomly selected from

diseased population (case-family design), their data may be included through a retro-

spective likelihood. It would be interesting to replicate our analysis in an independent

study using such a design, including probands data in the analyses.

1.6 Discussion

A potentially interesting extension of our method is to further parametrize the mixing

distributions and estimate the parameters from data. If the qij’s are modeled para-

metrically, semiparametrically, or nonparametrically and estimated as q̂ij, it would

be interesting to develop methods to account for the discrepancy between q̂ij and

qij and to deliver appropriate estimation of the survival function and covariate effect

using the q̂ij.

Our method has the flexibility to account for cross-population heterogeneity by

characterizing the outcome in each population using different distributions specified
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by covariate parameters and error distributions (e.g., distinct scale or shape parame-

ter; population-specific covariate effect), while simultaneously allow for common com-

ponents across populations (e.g., shared covariate effect). Whether or not to adopt

population-specific effects or shared effects is often determined by the purpose of the

analysis and prior knowledge. In many cases, covariates whose effects are of particular

research interest might be assumed to be population-specific as a precaution, while

covariates that are not of interest be modeled across population.

We have assumed that the relative observations are independent, and excluded

probands from the analyses. In proband-relative studies, multiple relatives from the

same family may be collected and thus could have residual familial correlation. Our

current approach is still consistent if the probands are representative samples of the

probands population, but the inferences developed would no longer be valid. When

probands are not representative and there is residual familial aggregation, ascertain-

ment schemes may need to be modeled and probands and relative data analyzed

jointly. How to best accommodate familial correlation and adjust for probands as-

certainment schemes is highly challenging, and interesting.
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Table 1.1: Simulation results based on 1000 repetitions.

true mean median sd mean(ŝd) median(ŝd) 95% CI
simulation 1.1

β1 1.0000 0.9834 0.9703 0.4384 0.4474 0.4472 0.9570
β2 2.0000 1.9734 1.9626 0.3845 0.3958 0.3954 0.9570

simulation 1.2
α11 1.0000 0.9958 0.9992 1.0400 0.9623 0.9414 0.9410
α12 2.0000 2.0420 2.0456 0.8916 0.8539 0.8199 0.9310
α21 1.0000 0.9915 1.0140 0.8581 0.8395 0.8378 0.9420
α22 2.0000 1.9684 1.9879 0.7328 0.7436 0.7350 0.9530

simulation 2
α11 1.0000 1.0644 1.0584 1.1017 1.1758 1.1264 0.9530
α12 2.0000 2.0767 2.0493 1.2519 1.3178 1.2870 0.9620
α21 1.5000 1.4353 1.4306 0.7582 0.8072 0.7918 0.9640
α22 3.0000 2.9344 2.9167 0.8787 0.9039 0.8852 0.9490

simulation 3
β1 1.0000 0.9895 0.9915 0.3944 0.3976 0.3974 0.9520
β2 1.5000 1.4974 1.4894 0.1983 0.2083 0.2079 0.9560
α1 2.0000 1.9007 1.9443 1.1372 1.1737 1.1683 0.9600
α2 3.0000 3.0040 2.9988 0.5071 0.5071 0.5028 0.9420

Table 1.2: COHORT analysis results: estimated covariate effects (age, gender,
proband’s diagnosis of HD), their standard errors, and p-values.

Carriers Non-carriers
α1intercept α1Age α1Gender α1ProDiag α2intercept α2Age α2Gender α2ProDiag

est -33.65 0.76 -0.67 1.79 -7.07 0.18 2.82 -2.30
se 4.28 0.09 0.70 1.00 1.25 0.03 0.67 0.84

p-value < 0.001 < 0.001 0.34 0.07 < 0.001 < 0.001 < 0.001 0.006
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Figure 1.1 True function (solid line), median estimation (dashed line), mean
estimation (dotted line) and 95% confidence band (dash-dotted line) of H(T ) in
simulations 1.1 (upper-left), 1.2 (upper-right), 2 (lower-left), and 3 (lower-right) .
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Figure 1.2 Estimated H function (solid line), median estimation (dashed line),
mean estimation (dash-dotted line) and 95% confidence band (dashed line) of H(T )
in data analysis. Median, mean and 95% confidence band are based on 1000
bootstrapped samples.
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Figure 1.3 Fitted linear function Ĥ(t) versus age t for HD data analysis.
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Chapter 2

Generalized Partially Linear Single Index

Model with Measurement Error, Instruments

and Binary Response1

2.1 Introduction

Generalized linear models are familiar tools that are widely used in statistical applica-

tions. The model becomes complicated when the dependence of the response to some

covariates, even after the transformation with a suitable link function, is not linear.

A feasible and flexible approach to this is through introducing a partially linear single

index structure, so that some covariates are modeled linearly, while some other co-

variates are summarized into an index, and the relation of the index to the response is

modeled nonparametrically. This leads to the generalized partially linear single index

model. A further complexity is when some of the covariates are measured with errors.

Ignoring the measurement errors can generally lead to biased results, while taking

the measurement error into account is also hard without specifying the measurement

error variability exactly. Specifically, we denote the binary response variable Y , and

let the q × 1 covariate vector observed without error be Z. We further let X be a

p× 1 latent variable. The model we study then is explicitly written as

pr(Y = 1|X = x,Z = z) = H{xTβ + g(zTγ)} (2.1)

1Yang, G., Wang, Q., Cui, X and Ma, Y. Submitted to Computational Statistics and Data
Analysis, 07/02/2018.
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where β ∈ Rp and γ ∈ Rq are unknown parameters of interest, H(·) is a known inverse

link function, for example, the inverse logit link function H(·) = 1 − 1/{exp(·) + 1}

or the inverse probit link function H(·) = Φ(·), and g(·) is an unknown function.

Because γ is not identifiable when incorporated with an unspecified g, the constraint

‖γ‖ = 1 or the first component of γ is positive is often imposed. Here, we use the

latter choice, which fixes the first component of γ to be 1 and leave the remaining

components arbitrary. We denote the vector formed by the second to last components

of γ as γ−1.

When X is latent or observed with error, the parameters in model (2.1) is generally

hard to identify in practice. However, the existence of instruments is often very helpful

and can save the situation. Instead of observing X, we observe an erroneous version

of X, written as W and an instrumental variable S. The variables W and S are

linked to X through

W = X + U and X = m(S,Z;α) + ε, (2.2)

where m(·) is a known function up to an unknown parameter α. Here, we assume the

conditional mean of ε and the marginal mean of U to be zero, that is, E(ε|S,Z) = 0,

E(U) = 0. Further assume that (X,S,Z) is independent of U, U is independent

of ε, W is independent of (S,Z) given X, and Y is independent of (W,S) given

(X,Z). The model in (2.1), in combination with the instrumental variable condition

studied here, has much resemblance with the problem setting in Xu et al. (2015).

However, the critical difference lies in the presence of the unknown function g as well

as the unknown index vector γ. This seemingly small change actually brings much

more complexity in all aspects of the analysis, including the method development,

the theoretical proofs and the numerical implementation. To appreciate this fact, one

can link to the additional hurdles encountered and overcome in the literature when

moving from linear regression to single index models.

23



www.manaraa.com

As a field of much practical importance, measurement error models in general

have been extensively studied. However, as far as we are aware, no work exists in

studying measurement error models when the experiment model is of the generalized

partially linear single index type with binary response, while an instrumental variable

exists to provide additional information. In fact, the only works in handling binary

response models with measurement errors that we are aware are Stefanski & Carroll

(1985), Stefanski & Carroll (1987), Buzas & Stefanski (1996), Huang & Wang (2001),

Ma & Tsiatis (2006), in addition to Xu et al. (2015) mentioned above. However, none

of these works contains a partially linear single index component, and most of these

works do not consider instruments.

In this chapter, we demonstrate that by employing a prediction relation for the

unobserved covariates using available instruments, we can construct consistent esti-

mators for all the parameters in the generalized linear single index model. In addition,

we also provide a nonparametric estimator for the unspecified function of the esti-

mated index. The method we devise incorporates instrumental variables in a creative

and different way from most traditional method in handling instruments. In fact, our

work is the first in using instruments in handling the generalized linear single index

regression models with measurement error and binary response.

The rest of chapter is organized as follows. We describe our main methodology

and the asymptotic properties of our estimator in Section 2.2. Simulation studies are

given in Section 2.3 to provide finite sample performance of our method. We analyze

an AIDs study data in Section 2.4 and conclude the chapter in Section 2.5.

2.2 Estimation procedure via profiling and the asymptotic

properties

Denote the ith observed data Oi = (Yi,Wi,Si,Zi), for i = 1, . . . , n. These obser-

vations are independent and identically distributed (i.i.d.) according to the model
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described in (2.1) and (2.2). Our main interest is in estimating θ = (βT,γT
−1)T.

However, g(·) is a nuisance unknown function.

First of all, we have

W = m(S,Z;α) + U + ε,

where E(U + ε|S,Z) = 0. We can use least squares method to estimate α̂. (2.3) is

the estimating equation to obtain α̂.

n∑
i=1
Sα(Si,Zi;α) =

n∑
i=1

∂mT(Si,Zi;α)
∂α

Ω(Si,Zi){Wi −m(Si,Zi;α)} = 0, (2.3)

where Ω(S,Z) is any weight matrix. We can choose to use ordinary least squares

(OLS) or weighted least squares (WLS) method by using different weight matrix.

Specifically, we can use identity matrix as weight matrix to obtain OLS estimator

and use the inverse of the error variance-covariance matrix conditional on (S,Z) as

weight matrix to obtain WLS estimator.

After we have an estimate α̂, we can write X in the form of α̂ and (S,Z) and

plug into model (2.1) to obtain the joint distribution of (Y,S,Z) as

pr(Y = y,S = s,Z = z) = fS,Z(s, z)

×
∫ [

1− y + (2y − 1)H
{

m(S,Z, α̂)Tβ + εTβ + g(ZTγ)
}]

×fε(ε|s, z)dµ(ε), (2.4)

where fε(ε|s, z) is a conditional probability density function that satisfies
∫
εfε(ε|s, z)

dµ(ε) = 0 and fS,Z(s, z) is the joint pdf of (S,Z).

Now we move to construct the estimation procedure for θ and g(·). Borrowing

the ideas in Ma & Carroll (2006) and Xu et al. (2015), we will construct two sets of

estimating equations in order to estimate θ and g(·).
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Treating (2.4) as a semiparametric model, the nuisance tangent space is

Λ = Λ1 ⊕ Λ2

= {f(S,Z) : E(f) = 0, E(fTf) <∞,∀f ∈ Rp+q−1}

⊕{E{f(ε,S,Z)|Y,S,Z} : E(f|S,Z) = 0, E(εfT|S,Z) = 0,

E(fTf) <∞,∀f ∈ Rp+q−1}.

Notation ⊕ is used to emphasize that an arbitrary function f1(S,Z) in Λ1 and an ar-

bitrary function f2(ε,S,Z) in Λ2 satisfy E{f1(S,Z)f2
T(ε,S,Z)} = 0. The orthogonal

complement of Λ is

Λ⊥ = {f(Y,S,Z) : E(f|ε,S,Z) = α(S,Z)ε, ‖EαTα‖∞ <∞,∀f ∈ Rp+q−1,

∀α ∈ R(p+q−1)×p}.

Let Sθ{Y,S,Z;θ, g(·)}, and Sg{Y,S,Z;θ, g(·)} be the scores for θ and g(·) re-

spectively. Specifically,

Sθ{Y,S,Z;θ, g(·)}

= (2Y − 1)

×

∫  m(S,Z, α̂) + ε

g′(ZTγ)Z−1

H ′{m(S,Z, α̂)Tβ + εTβ + g(ZTγ)
}
fε(ε|s, z)dµ(ε)

∫ [
1− Y + (2Y − 1)H

{
m(S,Z, α̂)Tβ + εTβ + g(ZTγ)

}]
fε(ε|s, z)dµ(ε)

,

Sg{Y,S,Z;θ, g(·)}

= (2Y − 1)

×

∫
H ′
{

m(S,Z, α̂)Tβ + εTβ + g(ZTγ)
}
fε(ε|s, z)dµ(ε)∫ [

1− Y + (2Y − 1)H
{

m(S,Z, α̂)Tβ + εTβ + g(ZTγ)
}]
fε(ε|s, z)dµ(ε)

.

We get the efficient score by projecting Sθ and Sg to Λ⊥

L{Y,S,Z;θ, g(·)} = Sθ{Y,S,Z;θ, g(·)} − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z],

Φ{Y,S,Z;θ, g(·)} = Sg{Y,S,Z;θ, g(·)} − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z],
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where βθ{ε,S,Z;θ, g(·)} ∈ Rp+q−1 and bg{ε,S,Z;θ, g(·)} ∈ R satisfy

E{ Sθ{Y,S,Z;θ, g(·)} − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]|ε,S,Z} = αθ(S,Z)ε,

E{Sg{Y,S,Z;θ, g(·)} − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z]|ε,S,Z} = αg(S,Z)ε,

where αθ(S,Z) ∈ R(p+q−1)×p and αg(S,Z) ∈ R1×p. Here we have to specify the

following terms βθ,αθ, bg and αg. By multiplying ε on both sides of the above

formulas and taking expectation conditional on (S,Z), we obtain

E{ Sθ{Y,S,Z;θ, g(·)}εT − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]T|ε,S,Z}

= αθ(S,Z)E(εεT|S,Z),

E{Sg{Y,S,Z;θ, g(·)}εT − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z]εT|ε,S,Z}

= αg(S,Z)E(εεT|S,Z).

Then, we have

αθ(S,Z) = E{ Sθ{Y,S,Z;θ, g(·)}εT − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]T|ε,S,Z}

×{E(εεT|S,Z)}−1,

αg(S,Z) = E{Sg{Y,S,Z;θ, g(·)}εT − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z]εT|ε,S,Z}

×{E(εεT|S,Z)}−1.

Inserting the form of αθ(S,Z) and αg(S,Z) respectively, we obtain the following

equations

E{ Sθ{Y,S,Z;θ, g(·)}εT − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]T|ε,S,Z}

= E{ Sθ{Y,S,Z;θ, g(·)}εT − E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]T|ε,S,Z

×{E(εεT|S,Z)}−1ε,

E{Sg{Y,S,Z;θ, g(·)}εT − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z]εT|ε,S,Z}

= E{Sg{Y,S,Z;θ, g(·)}εT − E[bg{ε,S,Z;θ, g(·)}|Y,S,Z]εT|ε,S,Z} (2.5)

×{E(εεT|S,Z)}−1)ε.
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Then we can obtain the terms βθ and bg by solving the equations in (2.5). Unfor-

tunately, the integral equations in (2.5) do not have a closed form solution hence

numerical methods are required to obtain approximate solutions. In fact, these are

first type Fredholm integral equations and require regularization to obtain stable solu-

tions. Nevertheless, such integral equations are well studied in numerical analysis and

many methods exist. Here, our final goal is to obtain E[βθ{ε,S,Z;θ, g(·)}|Y,S,Z]

and E[bg{ε,S,Z;θ, g(·)}|Y,S,Z] instead of βθ and bg, hence the numerical problem

is an easier one to handle than the typical Type I Fredholm integral equations. For

details on how to solve the integral equations in (2.5), we refer to Kress (1991).

Obviously, it follows that

0 = E[L{Y,S,Z;θ, g(·)}|S,Z], (2.6)

0 = E[Φ{Y,S,Z;θ, g(·)}|S,Z]. (2.7)

Equations (2.6) and (2.7) form the backbone of our method that allows for a general

unknown function g(·). Because g(·) is modeled nonparametrically, we use the local

linear method to estimate ĝ(·). Let K(z) be a smooth symmetric density function,

let h be a bandwidth, and define Kh(z) = h−1K(z/h). Let U = ZTγ and u0 = zT
0 γ.

We approximate g(·) locally by a linear function

g(U,β) ≈ g(u0,β) + g′(u0,β)(U − u0).

The nonparametric function estimator ĝ(·) is then defined as the solution to g(u0,β)

of the local linear estimating equation

0 =
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;θ, g(u0,β)

+g′(u0,β)(Ui − u0)}. (2.8)

Note that although g(·) depends on β, its estimator depends on θ, hence we write it

as ĝ(·,θ). The estimate θ̂ is subsequently obtained as the solution to

0 =
n∑
i=1
L{Yi,Si,Zi;θ, ĝ(Ui;β)}, (2.9)
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In the above description, we have developed the whole methodology as if the com-

putation can be carried through. However, a closer look at the expressions involving

conditional expectation given S,Z reveals that these quantities are not computable

without knowing the distribution of ε given S,Z. Instead of estimating the error

distribution fε|S,Z(ε,S,Z), which is difficult, we propose to use a working model

and carry out all the calculations under this working model. Thus, in summary, we

first estimate the function g through the local linear method, by treating θ as pa-

rameters that are held fixed. The set of estimating equations are exactly (2.8) at

z0 = z1, . . . , zn, and the solutions are ĝ(γTz1,θ), . . . , ĝ(γTzn,θ). We then estimate

θ through solving (2.9). Obviously, this is a type of profiling estimation procedure.

We now study the asymptotic properties of the proposed estimator, which is

computed under the working model of fε|S,Z(ε,S,Z). We first list the regularity

conditions required.

(C1) The kernel function K(·) is non-negative, has compact support, and satisfies∫
K(s)ds = 1,

∫
sK(s)ds = 0, 0 < µ2 =

∫
s2K(s)ds <∞ and

∫
sK2(s)ds <∞.

(C2) The bandwidth h in the kernel smoothing satisfies nh2 →∞ and nh4 → 0 when

n→∞.

(C3) The link function H(·) is differentiable.

(C4) The nonparametric function g(·) has continuous first order derivative.

(C5) The random variable U = ZTγ has compact support and its marginal density

function fU(·) is bounded away from zero on the support.

Let α⊗2 = ααT for all matrix or vector α throughout the text. Then we have

the following result.

Theorem 2. Under the regularity conditions (C1)|(C5), θ̂ satisfy

√
n(θ̂ − θ)→ N(0,A−1BA−1T)
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in distribution when n→∞, where

A =


E
(
∂L{Yi,Si,Zi;β,g(Ui;β)}

∂βT − ∂L{Yi,Si,Zi;β,g(Ui;β)}
∂g(Ui;β)

E[∂Φ{Yj ,Sj ,Zj ;β,g(Ui;β)}/∂βT|Ui]
E[∂Φ{Yj ,Sj ,Zj ;β,g(Ui;β)}/∂g(Ui;β)|Ui]

)
−E

(
∂L{Yj ,Sj ,Zj ;β,g(Ui;β)}

∂g(Ui;β)
E[(Zj−Zi)T

−1∂Φ{Yj ,Sj ,Zj ;β,g(Ui,β)}/∂g(Ui,β)g′(Ui,β)|Ui]
E[∂Φ{Yj ,Sj ,Zj ;β,g(Ui,β)}/∂g(Ui,β)|Ui]

)


B = E
{(
L{Yi,Si,Zi;θ, g(Ui;θ)} − E

[
∂L{Y,S,Z;θ, g(U ;θ)}/∂g(U ;θ) | U = Ui

]
×
[
E {∂Φ{Y,S,Z;θ, g(U ;θ)}/∂g(U ;θ) | U = Ui}

]−1

×Φ{Yi,Si,Zi;θ, g(Ui;θ)}
)⊗2}

.

2.3 Numerical study

We performed three sets of simulation studies to evaluate the finite sample perfor-

mance of the proposed estimator. In all the simulations, we set the sample size

n = 1000 and we repeated the experiments 1000 times. In the first simulation, we

generated the observations (Yi,Wi, Si, Zi) from the model

pr(Yi = 1|Xi = xi, Zi = zi) = H{βxi + g(γ1z1i + γ2z2i + γ3z3i + γ4z4i)},

Wi = Xi + Ui,

Xi = α1 + α2Si + εi, (2.10)

where H(t) is the inverse logit link function and the invers probit link function,

and α1 = 1, α2 = 1, β = 0.3, γ1 = 1, γ2 = 0.5, γ3 = 1, γ4 = −0.3. The true

function g(t) = t, i.e. we experiment with a simple linear function with slope 1 and

intercept 0 for g. The observable covariates Z1i, Z2i, Z4i and the instrument variable

Si are generated from the standard normal distribution. The observable covariate

Z3i is generated from uniform distribution on domain [−1, 1]. Ui is generated from a

normal distribution with mean zero and variance 0.6. εi is generated from a standard

normal distribution with mean 0 and variance Si2/2 and a t5 distribution multiplied

by |Si|/
√

2. Since our working model for εi is set to be normal, it corresponds to

a correct working model in the simulation where εi’s are normally distributed, and
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corresponds to a misspecified working model in the simulation where εi’s are non-

normally distributed.

In our second simulation, we experimented with different parameters values. Here,

we set α1 = 1, α2 = 1, β = 0.3, γ1 = 1, γ2 = 0.2, γ3 = 0.3, γ4 = −0.4. The

observable covariates Z1i, Z2i, Z4i and the instrument variable Si are generated from

0.5 times a standard normal distribution. The observable covariate Z3i is generated

from uniform distribution on domain [−1, 1]. Ui and εi are generated similarly as in

the first simulation. Our true g function in the second simulation is nonlinear and it

is the quadratic function g(t) = 1.5t2.

Further, in the third simulation, we generated the data similarly as in the first

simulation, except that the true function form of g is now g(t) = 1.5 sin(t) for normal

distributed εi and g(t) = sin(t) for t distributed εi. Thus we also experiment with a

nonlinear function form for g.

We used respectively OLS and WLS to estimate α1 and α2, and compared the

subsequent performance with the estimation result under the known α for all three

simulation studies described above. The results of the three simulations are summa-

rized in Tables C.1 to C.6 and Figure C.1. From these results, it is quite clear that

the proposed estimators indeed yield consistent estimation, regardless a correct or a

mis-specified working model is used, in that the biases are quite small and the mean

and median estimated curves track the true curves very well. Even though WLS

produces more efficient estimators for α1 and α2, the efficiency in the parameter es-

timation of α does not really translate to the efficiency difference in estimating the

main parameters β and γ. In fact, even when α is completely known, we do not

see a significant advantage in estimating β and γ. This is quite encouraging since

this confirms our theoretical discovery. This result also provides practical significance

since α is typically not known in reality.
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2.4 Real data analysis

The data set we analyze here is from the popular AIDS Clinical Trials Group (ACTG)

study. In this study four different treatments ‘ZDV’, ‘ZDV+ddI’, ‘ZDV+ddC’, and

‘ddC’ were used on HIV infected adults whose CD4 cell counts were between 200

and 500 per cubic millimetre. ‘ZDV’ is a standard treatment, and is considered as

the reference treatment. For convenience, we name ‘ZDV’ treatment1, ‘ZDV+ddI’

treatment2, ‘ZDV+ddC’ treatment3 and ‘ddC’ treatment4. Age was included as an

explanatory variable. There were 1036 patients in our sample who had no antiretro-

viral therapy prior to the study. The purpose of this study is to see whether there

is any difference among the four treatments in terms of preventing a patient’s CD4

count from dropping below 50%. CD4 count is an important indicator for HIV posi-

tive patients to develop AIDS or to die from HIV caused disease. This is considered

an endpoint event and when it occurs, our response variable Y is set to 1. We use

Z1, Z2, Z3 as three treatment indicators besides the reference treatment.

Let X be the baseline log(CD4 count) before the start of the treatment. Here,

we treat X as a latent variable, since it can not be measured precisely. Instead of

observing X, we observeW , which is the average of two available measurements of X.

We thus assume W is X plus a random noise. We also have an instrumental variable

S, which is the screening log(CD4 count). Figure C.2 suggests that there is a linear

relationship between W and S, thus we further assume a linear regression model to

link X and S. Finally, to model the relation between the occurrence of AIDS or

death with the covariates and treatments, we used the familiar logistic model. The

complete form of the model that is used to describe the ACTG data is

pr(Yi = 1|Xi = xi, Zi = zi) = H{βxi + g(γ1z1i + γ2z2i + γ3z3i + γagezage)},

Wi = Xi + Ui,

Xi = α1 + α2Si + εi. (2.11)
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We used the methodology developed earlier in the chapter to analyze the data. Using

OLS method, we got the estimates for α1 and α2 to be (0.001, 0.674). The estimates

for the main parameters β and γ’s are shown in Table C.7. These results indicate

that there is significant difference between the four different treatments.

We further fixed the Age variable at 41 years old, which is the mid point on the

range of Age variable to compare the four treatments. The estimated g function

of treatments 1, 2, 3 and 4 are -1.23, -1.78, -1.94 and -2.20 respectively. Their

corresponding 90% confidence intervals are (-1.65, -0.96), (-2.01, -1.63), (-2.17, -

1.78) and (-2.26, -1.80). It indicates that treatments 2, 3, 4 are more efficient than

treatment 1 for 41 year old patients in general.

We also plot the estimated g as a function of the estimated index in Figure C.3,

together with its 95% confidence band. We can see that g is decreasing and nonlinear

and has a general decreasing trend, indicating a protective effect of the index in terms

of risk of CD4 counts decreasing or death.

2.5 Discussion

Measurement error issue is a widely encountered problem in statistical applications.

When the magnitude of the error is known or estimable, either from multiple mea-

surements or from validation data, many methods are available to proceed with the

subsequent analysis that adjust for the known measurement error issue. However,

when the measurement error magnitude is unknown and un-estimable, which is often

the case in practice, instruments are often indispensable. In this chapter, we demon-

strate that instrumental variable can be used in estimation in the generalized linear

single index model context with binary response, which is unsolved in the literature

before. In addition, the estimation of the model parameters is conducted without

making any parametric assumption for the distribution of the unobserved variables

in the model, i.e. we have worked in the functional model framework.
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The simulation studies show satisfactory performance of the proposed estimator in

finite sample situation. Further, despite the fact that we present our main estimator in

the context of logistic and probit models, the method is not restricted to these models

only. In fact, any generalized partially linear regression model of Y conditional on X

and Z can be handled by our method via a suitable link function H, thus Y is not

restricted to binary variables and the method can be further extended to arbitrary

generalized semiparametric single index models in terms of methodology. However,

we foresee computational challenges in the more general cases.
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Chapter 3

Locally efficient estimation in generalized

partially linear model with measurement error

in nonlinear function1

3.1 Introduction

Generalized partially linear models have been widely used in statistics. Such models

enrich the more classic generalized linear models by allowing a covariate to enter the

link function through a nonparametric form. This is useful when the dependence of

the response to some covariates, even after transformation through a suitable link

function, is still not linear and difficult to specify. At the same time, the model also

allows the more classic generalized linear dependence on some other covariates. Many

works exist in the literature for estimation and inference for generalized partially

linear models, see, for example Carroll et al. (1995), Liang et al. (2009), Yu & Ruppert

(2012).

When one of the covariates involved in the generalized partially linear model can-

not be measured precisely, the problem becomes much more difficult. In fact, most

of the works in handling measurement error issues in the generalized partially linear

model considered only the case that measurement error occurs to a covariate involved

in the linear component (Ma & Carroll 2006, Liu et al. 2017, Liang & Ren 2005, Liu

2007, Liang & Thurston 2008). When the model degenerates to simply the general-

1Wang, Q., Ma, Y. and Yang, G. Submitted to TEST, 07/12/2018.
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ized linear model, even more literatures exist to handle the measurement error issues

(Stefanski & Carroll 1985, 1987, Huang & Wang 2001, Ma & Tsiatis 2006, Carroll &

Crainiceanu 2006, Buonaccorsi 2010, Xu et al. 2015). When handled properly, it can

be shown that the parameters can be estimated at the root-n convergence rate despite

of the presence of the measurement error and the possible presence of the nonpara-

metric function in the model. However, it is a different story when the covariate inside

the nonparametric function itself is measured with error. We conjecture that this is

because as soon as the covariate inside an unknown function is subject to error, the

problem falls into the general framework of nonparametric measurement error mod-

els and the standard practice for estimation and inference is through deconvolution.

Deconvolution method is widely used in handling latent components and has been

used to show that nonparametric regression with errors in covariates can have very

slow convergence rate. Possibly due to these inherent difficulties generalized partially

linear models with errors in the covariate inside the nonparametric function has not

been studied systematically.

We tackle this difficult problem where the error occurs to the covariate inside the

nonparametric component of the generalized partially linear model through a novel

approach that avoids the deconvolution treatment completely. Two key ideas lead

to our success in this endeavor. The first is the idea of using B-splines expansion to

approximate the nonparametric function of the latent covariate. The B-spline nature

allows us to write out the approximation form without having to perform the esti-

mation simultaneously. This is different from nonparametric estimation via kernel

method, where the approximation and estimation is integrated and inseparable. The

second idea is the recognition that after the B-spline approximation, the error-free

model is effectively a parametric model, or at least a parametric model in terms of

operation, hence the only nonparametric component in the measurement error model

is the distribution of the latent covariate. This implies that the semiparametric ap-
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proach in Tsiatis & Ma (2004) can be adopted here to help establishing the estimation

procedure. The encouraging discovery is that we not only can bypass the difficulties

caused by nonparametric function of a covariate measured with error in terms of es-

timation, we also prove that the procedure can retain the root-n convergence rate of

the parameter estimation in the original model.

The structure of this chapter is as follows. We describe the model and the es-

timation methodology in Section 3.2, following with establishing the large sample

properties of the parameter estimation in Section 3.3. Two simulation studies are

conducted in Section 3.4 and we analyzed the AIDS Clinical Trials Group (ACTG)

study in Section 3.5. We finish the chapter with some discussions in Section 3.6. All

the technical details and proofs are provided in an Appendix.

3.2 Main results

3.2.1 The model

The generalized partially linear model we study is

fY |X,Z(y, x, z,α,β, g) = f{y, zTβ + g(x),α}, (3.1)

where f is a known link function up to the unknown parameters α, β and unknown

function g(·). For example, f(·) can be the inverse logit link function f(·) = 1 −

1/{exp(·) + 1}. The response variable Y is an observable variable and X,Z are

covariates. Here Z is observable, while X is a random variable measured with error,

thus it is not directly observable. Instead of observing X, we observe W , where

W = X + U, (3.2)

and U is a normal random error independent of X,Z with mean zero and variance σ2
U .

For ease the presentation of the main methodology, we assume σ2
U is known. When

σ2
U is not known, a common approach is to use repeated measurements to estimate
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σ2
U first and then plug in. The observed data are (Wi,Zi, Yi), i = 1, . . . , n, which are

independent and identity distributed (iid). Our goal is to estimate α, β and g(·)

hence to understand the dependence of Y on the covariates (X,Z).

3.2.2 Efficient Score Derivation

For preparation, we first approximate g(x) with a B-spline representation, i.e. g(x) ≈

B(x)Tγ. Under this approximation, model (3.1) becomes

fY |X,Z(y, x, z,α,β, g) ≈ fY |X,Z(y, x, z,θ) ≡ f{y, zTβ + B(x)Tγ,α},

which is a complete parametric model with unknown parameters θ ≡ (αT,βT,γT)T.

This model falls in the general framework of Tsiatis & Ma (2004) hence the estima-

tion procedure there can be adopted here. Specifically, the joint distribution of the

observed variables conditional on Z is

fW,Y |Z(y, w, z,θ) =
∫
f{y, zTβ + B(x)Tγ,α}fW |X(w, x)fX|Z(x, z)dµ(x).

with the condition distribution function fX|Z(x, z) being a nuisance parameter. The

nuisance tangent space Λ and its orthogonal complement Λ⊥ can be written as

Λ = [E{a(X,Z)|Y,W,Z} : E{a(X,Z) | Z} = 0],

Λ⊥ = [h(Y,W,Z) : E{h(Y,W,Z) | X,Z} = 0 almost everywhere].

The efficient score for θ is the residual of its score vector Sθ(y, w, z) after projecting

it on to the nuisance tangent space Λ, denoted by

Sres(y, w, z,θ) ≡ Sθ(y, w, z,θ)− Π{Sθ(Y,W,Z,θ)|Λ},

where

Sθ(y, w, z,θ) ≡ ∂logfW,Y |Z(y, w, z,θ)
∂θ

.

Here “res” stands for residual. The detailed form of Sres(y, w, z,θ) is given as

Sres(Y,W,Z,θ) = Sθ(Y,W,Z,θ)− E{a(X,Z,θ)|Y,W,Z}, (3.3)
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where a(X,Z,θ) satisfies

E{Sθ(Y,W,Z,θ) | X,Z} = E[E{a(X,Z,θ)|Y,W,Z} | X,Z]. (3.4)

Now, noting that the above derivation is obtained from the approximate model (3.3),

we hence perform some further analysis. Separating the components corresponding to

α,β and γ in θ, we can write the Sθ(y, w, z,θ) ≡ {Sα,β(y, w, z,θ)T,Sγ(y, w, z,θ)T}T,

which leads to the corresponding relation Sres(y, w, z,θ) ≡ {Sres1(y, w, z,θ)T,

Sres2(y, w, z,θ)T}T. The estimating equation of the approximate model can be writ-

ten as

n∑
i=1

Sres(Yi,Wi,Zi,θ) ≡
n∑
i=1
{Sres1(Yi,Wi,Zi,θ)T,Sres2(Yi,Wi,Zi,θ)T}T = 0. (3.5)

Remember that our original model contains an unknown function g(z). Thus, for

the estimation of α,β, it is beneficial to treat g as a nuisance parameter as well first,

and estimate α,β using profiling. We then plug in the estimated values of α and

β and estimate g via the B-spline approximation. Of course in addition to g, the

distribution of the unobservable covariate conditional on the observable covariate Z

is also a nuisance component and still has to be taken into account.

Let δ ≡ (αT,βT)T be a p-dimensional parameter. We propose to solve for γ from∑n
i=1 Sres2(Yi,Wi,Zi,θ) = 0 to obtain γ̂(δ) first. Now from

fW,Y |Z(w, z, y, δ, g, fX) =
∫
f{y, zTβ + g(x),α}fW |X(w, x)fX|Z(x, z)dµ(x).

we can construct the nuisance tangent space as Λ = ΛfX + Λg, where

ΛfX = [E{a(X,Z)|Y,W,Z} : E{a(X,Z) | Z} = 0]

Λg =
(
E
[
s{Y,ZTβ + g(X),α}b(X)|Y,W,Z

]
: ∀b(X)

)
,

where s(y, t,α) ≡ ∂logf(y, t,α)/∂t. Note that ΛfX and Λg are not orthogonal to

39



www.manaraa.com

each other. We can further verify that

Λ⊥fX = [h(Y,W,Z) : E{h(Y,W,Z) | X,Z} = 0 almost everywhere],

Λ⊥g =
(
h(Y,W,Z) : E

[
h(Y,W,Z)s{Y,ZTβ + g(X),α} | X,Z

]
= 0

almost everywhere) .

The efficient score for δ is now the residual of the score vector Sδ after projecting it

on to the nuisance tangent space Λ, denoted by

Seff (Y,W,Z, δ, g) = Sδ(Y,W,Z, δ, g)− Π{Sδ(Y,W,Z, δ, g) | Λ}. (3.6)

Its explicit form is given as

Seff (Y,W,Z, δ, g) = Sδ(Y,W,Z, δ, g)− E{a(X,Z)|Y,W,Z}

−E
[
s{Y,ZTβ + g(X),α}b(X)|Y,W,Z

]
,

where a(X,Z) and b(X) satisfy

E{Sδ(Y,W,Z, δ, g) | X,Z}

= E[E{a(X,Z)|Y,W,Z} | X,Z]

+E(E[s{Y,ZTβ + g(X),α}b(X)|Y,W,Z] | X,Z)

and

E[Sδ(Y,W,Z, δ, g)s{Y,ZTβ + g(X),α} | X,Z]

= E[E{a(X,Z)|Y,W,Z}s{Y,ZTβ + g(X),α} | X,Z]

+E(E[s{Y,ZTβ + g(X),α}b(X)|Y,W,Z]

×s{Y,ZTβ + g(X),α} | X,Z). (3.7)

We can then form the estimating quation ∑n
i=1 Seff{Yi,Wi,Zi, δ, γ̂(δ)} = 0 to solve

for δ̂ as the estimator, where a(X,Z),b(X) are the solutions to the integral equations

(3.7).
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3.2.3 Estimation under working model

The above derivations are based on efficient score calculation and hence will yield

the efficient estimator. However, a close look at the procedure reveals that the pro-

cedure is not practical because the implementation relies on the unknown function

fX|Z(x, z). Thus, our estimator needs to be calculated under a posited working model

of f∗X|Z(x, z). The procedure is described below, where we use ∗ to denote a quantity

whose calculation is carried out using f∗X|Z(x, z) instead of fX|Z(x, z).

1. Posit a working model f∗X|Z(x, z).

2. Solving for γ from ∑n
i=1 Sres

∗
2(Yi,Wi,Zi,θ) = 0 to obtain γ̂(δ).

3. Calculate the score function S∗δ(Y,W,Z, δ, g) under the working model f∗X|Z(x, z).

4. Solve the integral equation (3.7) to get a(X,Z) and b(X).

5. Calculate the approximate efficient score function S∗eff (Y,W,Z, δ, ĝ) following

(3.6), where ĝ(·) = B(·)Tγ̂(δ).

6. Solve the estimating equation ∑n
i=1 S∗eff (Yi,Wi,Zi, δ, ĝ) = 0 to obtain δ̂.

When we calculate a(X,Z) at each observed z value and calculate b(X), we dis-

cretize the distribution of X on m equally spaced points on the support of fX|Z(x, z)

and calculate the probability mass function πj(Z) at each of the m points. We of

course normalize the πj(Z) in order to ensure∑m
j=1 πj(Z) = 1. Note that using the de-

scritization, f ∗X,Y,W |Z(xj, y, w, z) ≈ f{y, zTβ+g(xj),α}fW |X=xj(w, xj)πj(Z). Further,

S∗δ(Y,W,Z, δ, g), E∗{a(X,Z)|Y,W,Z} and E∗[s{Y,ZTβ + g(X, δ),α}b(X)|Y,W,Z]
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can be approximated by

S∗δ(Y,W,Z, δ, g)

≈
∂log[∑m

i=1 f{y, zTβ + g(xi),α}fW |X(w, xi)πi(Z)]
∂δ

,

E∗{a(X,Z)|Y,W,Z}

≈
∑m
i=1 a(xi,Z)f ∗X,Y,W |Z(xi, Y,W,Z)∑m

i=1 f
∗
X,Y,W |Z(xi, Y,W,Z) ,

E∗[s{Y,ZTβ + g(X),α}b(X)|Y,W,Z]

≈
∑m
i=1 s{Y,ZTβ + g(xi),α}b(xi)f ∗X,Y,W |Z(xi, Y,W,Z)∑m

i=1 f
∗
X,Y,W |Z(xi, Y,W,Z) .

Let A(X,Z) ≡ {a(x1,Z), a(x2,Z), . . . , a(xm,Z)}T and B(X) ≡ {b(x1),b(x2), . . . ,

b(xm)}T. Let M1(X,Z) ≡ {m1(x1,Z),m1(x2,Z), . . . ,m1(xm,Z)}T be a m×pδ ma-

trix, where pδ is the length of δ and m1(xi,Z) ≡ E{S∗δ(Y,W,Z, δ, g) | xi,Z}. Further,

let M2(X,Z) ≡ {m2(x1,Z),m2(x2,Z), . . . ,m2(xm,Z)}T be a m× pδ matrix, where

m2(xi,Z) ≡ E
[
S∗δ(Y,W,Z, δ, g)s{Y,ZTβ + g(xi)} | xi,Z

]
. Finally, let C(X,Z) be a

m×m matrix with the (i, j) block equal to

E

 f ∗X,Y,W |Z(xj, Y,W,Z)∑m
i=1 f

∗
X,Y,W |Z(xi, Y,W,Z) | xi,Z

 ,
let D(X,Z) be an m×m matrix with the (i, j) block equal to

E

s{Y,ZTβ + g(xj),α}f ∗X,Y,W |Z(xj, Y,W,Z)∑m
i=1 f

∗
X,Y,W |Z(xi, Y,W,Z) | xi,Z

 ,
let F(X,Z) be an m×m matrix with the (i, j) block equal to

E

f ∗X,Y,W |Z(xj, Y,W,Z)s{Y,ZTβ + g(xi)}∑m
i=1 f

∗
X,Y,W |Z(xi, Y,W,Z) | xi,Z

 ,
and let G(X,Z) be an m×m matrix with the (i, j) block

E

s{Y,ZTβ + g(xj),α}f ∗X,Y,W |Z(xj, Y,W,Z)s{Y,ZTβ + g(xi)}∑m
i=1 f

∗
X,Y,W |Z(xi, Y,W,Z) | xi,Z

 .
We can get a(xi,Z) and b(xi) by solvingC(X,Z) D(X,Z)

F(X,Z) G(X,Z)


A(X,Z)

B(X)

 =

M1(X,Z)

M2(X,Z)

 .
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3.3 Asymptotic properties

Let Sres2(Yi,Wi,Zi,α,β, g) be Sres2(Yi,Wi,Zi,α,β,γ) with all the appearance of

B(X)Tγ in it replaced by g(X).

We first list the set of regularity conditions required for establishing the large

sample properties of our estimator.

(C1) The true density fX(x) is bounded with compact support. Without loss of

generality, we assume the support of fX(x) is [0, 1].

(C2) The function g(x) ∈ Cq([0, 1]), q > 1, is bounded with compact support.

(C3) The spline order r ≥ q.

(C4) Define the knots t−r+1 = · · · = t0 = 0 < t1 < · · · < tN < 1 = tN+1 = · · · = tN+r,

where N is the number of interior knots that satisfies N →∞, N−1n(logn)−1 →

∞ and Nn−1/(2q) → ∞ as n → ∞. Denote the number of spline bases dγ , i.e.

dγ = N + r.

(C5) Let hj be the distance between the jth and (j − 1)th interior knots. Let hb =

max1≤j≤N hj and hs = min1≤j≤N hj. There exists a constant ch ∈ (0,∞) such

that hb/hs < ch. Hence, hb = Op(N−1) and hs = Op(N−1).

(C6) γ0 is a dγ-dimensional spline coefficient vector such that supx∈[0,1] |B(x)Tγ0 −

g(x)| = Op(hqb).

(C7) The equation set

E{S∗eff (Yi,Wi,Zi, δ,γ)} = 0,

E{Sres
∗
2(Yi,Wi,Zi, δ,γ)} = 0

has unique root for θ in the neighborhood of θ0. Recall that θ = (αT,βT,γT)T.

The derivatives with respect to θ of the left hand side are smooth functions of
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θ, with its singular values bounded and bounded away from 0. Let the unique

root be θ∗. Note that θ0 and θ∗ are functions of N , that is, for any sufficiently

large N , there is a unique root θ∗ in the neighborhood of θ0.

(C8) The maximum absolute row sum of the matrix ∂S∗eff (Yi,Wi,Zi, δ0,γ0)/∂γT
0 ,

i.e. ‖∂S∗eff (Yi,Wi,Zi, δ0,γ0)/∂γT
0 ‖∞, is integrable.

The conditions listed above are all standard bounded, smoothness conditions on

functions and some classical conditions imposed on the spline order and number of

knots. These are commonly used conditions in spline approximation and semipara-

metric regression literature. We now establish the consistency of δ̂n and γ̂n as well

as the asymptotic distribution property of δ̂n.

Theorem 3. Assume Conditions (C1)− (C7) to hold. Let θ̂n satisfy

1
n

n∑
i=1

S∗eff (Yi,Wi,Zi, δ̂n, γ̂n) = 0

1
n

n∑
i=1

Sres
∗
2(Yi,Wi,Zi, δ̂n, γ̂n) = 0.

Then θ̂n − θ0 = op(1) element-wise.

The result in Theorem 3 is used to further establish the asymptotic properties of

the estimator of the parameters of interest δ̂n and estimator of the function of interest

B(·)Tγ̂n.

Theorem 4. Assume Conditions (C1)− (C8) to hold and let

Q ≡ E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂δT

0


B(·)Tγ=g(·)

 .
Then

√
n(δ̂n − δ0) = −Q−1 1√

n

n∑
i=1

S∗eff (Yi,Wi,Zi, δ0, g) + op(1).

Consequently,
√
n(δ̂n − δ0)→ N(0,V) in distribution when n→∞, where

V = Q−1var{S∗eff (Yi,Wi,Zi, δ0, g)}(Q−1)T.
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Theorem 4 indicates that δ is estimated at the root-n rate. The proofs of Theorems

3 and 4 are given in the Appendix. Because the B-spline estimation of g(·) is at a

slower rate than root-n, the estimation of δ does not have any impact on the first

order asymptotic properties of ĝ. Thus, for the analysis of the asymptotic properties

of ĝ, we can treat δ as known. Then, the proof of Theorem 2 in Jiang & Ma (2017) can

be directly used. We skip the details of the proof and provide the specific convergence

property of the estimation of g in Theorem 5.

Theorem 5. Assume Conditions (C1)− (C8) to hold and let

P ≡ E

∂Sres
∗
2(Yi,Wi,Zi, δ0,γ)

∂γT


B(·)Tγ=g(·)

 .
Then ‖γ̂n − γ0‖2 = Op{(nhb)−1/2}. Further,

γ̂n − γ0 = −P−1n−1
n∑
i=1

Sres
∗
2(Yi,Wi,Zi, δ0,γ){1 + op(1)}.

This leads to that ĝ(x), which equals B(x)Tγ̂n, satisfies

sup
x∈[0,1]

|ĝ(x)− g(x)| = Op{(nhb)−1/2}.

Specifically, bias{ĝ(x)} = E{ĝ(x)− g(x)} = O(hq−1/2
b ) and

√
nhb[ĝ(x)− g(x)− bias{ĝ(x)}]

=
√
nhbB(x)T

{
−P−1n−1

n∑
i=1

Sres
∗
2(Yi,Wi,Zi, δ0, g)

}
+ op(1).

3.4 Numerical Study

In our first simulation, we generated the observations (Wi,Zi, Yi) from the model

pr(Yi = 1|Xi = xi, Zi = zi) = H{g(xi) + β1z1i + β2z2i + β3z3i + β4z4i}, (3.8)

where W = X + U and U = normal(0, 0.03). The true function is: g(x) =

−5 exp{−0.8(x − 2.5)2} and H(t) is the inverse logit link function. We set β1 = 1,
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β2 = 0.5, β3 = 1 and β4 = −0.3. The sample size is 1000 and we ran 1000 simulations.

Xi is generated from a truncated normal distribution with mean 0.5 and variance 1/36

on [0,1] independently of Zi. We implemented our method using a normal working

model, corresponding to a correct working model case. In order to investigate the

performance of our method under a misspecified working model, we also performed

another study, in which we have Xi generated from a truncated student-t distribution

with degrees of freedom 5. Covariates Z1i, Z2i and Z4i are generated from the stan-

dard normal distribution. The covariate Z3i is generated from a uniform distribution

on [−1, 1]. In both studies, we estimated both the parameters β1, β2, β3, β4 and the

function g(x).

In the second simulation, we set the true g function to be g(x) = −5exp(−0.2x2)+

5, while all other settings remain the same. Similarly to the first simulation, we

compared the performance of a correct working model and a misspecified working

model in terms of estimating both β1, β2, β3, β4 and g(x).

In both simulations 1 and 2, we discretized the distribution of X on [0, 1] to

m = 15 equal segments and we use the truncated normal distribution discussed

earlier as our working model. We used quadratic splines with 7 knots to estimate

g(x). The simulation results are shown in Tables D.1, D.2 and Figures D.1, D.2.

The results in Tables D.1 and D.2 show little bias for the β estimation, regardless

a correct working model or a misspecified working model is used. Figures D.1 and D.2

show that the estimators of g(x) have somewhat large bias on the boundary in both

methods, which is within our expectation when factoring in the boundary effect. The

performance of g(x) estimation is satisfactory in the interior of the function domain.

The simulation results show no big difference between the performance of the correct

working model of fX(x) and a misspecified one, confirming our theory on consistency

in both cases.
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3.5 Data Analysis

The data set we analyzed is from an AIDS Clinical Trials Group (ACTG) study.

The goal of this study is to compare four different treatments, ‘ZDV’, ‘ZDV+ddI’,

‘ZDV+ddC’ and ‘ddC’, on HIV infected adults whose CD4 cell counts were from 200

to 500 per cubic millimeter. We labelled those treatments as treatment 1, treatment

2, treatment 3 and treatment 4. We used treatment 1 as the base treatment because

it is a standard treatment. There were 1036 patients enrolled in the study and they

had no antiretroviral therapy at enrollment. The criteria that we used to compare

the four treatments is whether a patient has his or her CD4 count drop below 50%,

which is an important indicator for HIV infected patients to develop AIDS or die.

We have Y = 1 if a patient has his or her CD4 count drop below 50%, and Y = 0

otherwise.

Our model has the form:

pr(Yi = 1|Xi = xi, Zi = zi) = H{g(xi) + β1z1i + β2z2i + β3z3i}, (3.9)

where W = X + U and U = normal(0, σ2
U). The covariates Z1, Z2, and Z3 are

dichotomous variables. Z1i = Z2i = Z3i = 0 indicates the ith individual receives

treatment 1, the base treatment; Z1i = 1 and Z2i = Z3i = 0 indicates the ith

individual receives treatment 2; Z1i = 0, Z2i = 1 and Z3i = 0 indicates the ith

individual receives treatment 3; Z1i = Z2i = 0 and Z3i = 1 indicates the ith individual

receives treatment 4. The covariate X is the baseline log(CD4 count) prior to the

start of treatment. Because CD4 count cannot be measured precisely, X is considered

as our unobservable covariate. We use the average of two available measurements of

log(CD4 count) as W .

First, we estimated the variance of U using the two repeated measurements and

we got σ̂2
U = 0.3. Then, we constructed our working model of unobservable variance

X. We assume that X follows a truncated normal distribution and estimated its
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variance by σ̂2
X = σ̂2

W − σ̂2
U .

Table D.3 shows that Treatment 2, Treatment 3 and Treatment 4 are more efficient

than the baseline treatment, i.e. Treatment 1, at 90% confidence level according to

the P-values of β1, β2 and β3. The estimated index function g(x) is in Figure D.3. We

generated 1000 bootstrapped samples and calculated the bootstrapped mean, median

and 90% confidence band for g(x). It shows that g(x) is an decreasing function,

indicating that a large baseline CD4 count leads to a smaller risk of developing AIDS

or having his/her CD4 counts drop below 50%. Thus, our analysis indicates that in

general, the alternative treatments and a higher baseline CD4 count are beneficial to

a patient.

3.6 Discussion

We devised a consistent and locally efficient estimation procedure to estimate both

parameters and functions in a generalized partially linear model where the covariate

inside the nonparametric function is subject to measurement error. The method

does not make any assumption on the distribution of the covariate measured with

error other than its finite support, which is easily satisfied in practice. The method

is efficient in terms of estimating the model parameters if a correct working model

is used, and retains its consistency even if this working model is misspecified. The

estimation procedure breaks free from the deconvolution approach, which is the norm

of practice in handling nonparametric problems with measurement errors. Instead,

a novel usage of B-spline approach in combination with semiparametric method is

exploited to push through the analysis.

Many possible extensions can be explored further. Possibilities include handling

multi-variate covariates measured with error, via multivariate B-splines, or incor-

porating index modeling approach or additive structures. Although our method is

developed conceptually for generalized linear models, we did not really make use of

48



www.manaraa.com

the linear structure, hence any model of the form f(Y, g(X),Z,β) can be treated in

a similar way. To this end continuous Y typically involves normal error and has been

widely studied, while binary response is studied in the main text of this work. When

Y is count data, many computational issues arise, and is worth careful investigation

further.

We have assumed the measurement error U to either have a known distribution,

or to have its model parameters estimable from multiple observations. Of course, any

other available information to identify the measurement error distributional model

parameter also works and the plug-in procedure is largely “blind” to how the param-

eter is estimated. Of course, the estimated distributional model parameter will alter

the estimation variability of δ, which can be take into account in a standard way (Yi

et al. 2015).
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Appendix B

Chapter 1 Appendix

B.1 Derivation of
∫

a
(u)
ij drij and

∫
rija

(u)
ij drij

Here we show the derivation of the relationships∫
a

(u)
ij drij = qij {1− Fj(t)}1−δi

{
h(u)(yi)fj(t)

}δi ∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j∫

rija
(u)
ij drij = e−tqijfj(t)

∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

if δi = 0∫
rija

(u)
ij drij = −e−tqijh(u)(yi){f ′j(t)− fj(t)}

∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

if δi = 1.

Let t = H(u)(yi) + xT
i β

(u) + zT
i α

(u)
j . Then

a
(u)
ij = {h(u)(yi)rij exp(t)}δi exp(−rijet)qijψj(rij)

∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

.

When δi = 0,

da
(u)
ij

dt
= −rijet exp(−rijet)qijψj(rij)

∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

d2a
(u)
ij

dt2
= −rijet exp(−rijet)qijψj(rij)

+r2
ije

2t exp(−rijet)qijψj(rij)
∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

.

When δi = 1,

da
(u)
ij

dt
= −h(u)(yi)r2

ije
2t exp(−rijet)qijψj(rij)

+h(u)(yi)rijet exp(−rijet)qijψj(rij)
∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

Thus, when δi = 0,

rija
(u)
ij = −e−t

da
(u)
ij

dt

∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j ,δi=0

,
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and when δi = 1,

rija
(u)
ij = h(u)(yi)e−t

d2a
(u)
ij

dt2
−
da

(u)
ij

dt

 ∣∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j ,δi=0

.

B.2 List of regularity conditions

(a) The parameter value θ0 belongs to the interior of a compact set Θ ∈ Rdθ , and

φ0(t) > 0 for all t ∈ [0, τ ]. (C1).

(b) With probability 1, pr(Yi ≥ τ | Xi,Zi) > δ0 > 0 for some constant δ0 > 0.

(C2).

(c) fj(s) is bounded away from zero and infinity on its support for j = 1, . . . , p.

(C3).

(d) fj(s) is three times continuously differentiable and, the f (v)
j (s)/ exp(ks), v =

0, . . . , 3, k = 2, . . . , 4, are square integrable on (−∞, log(τ)] for j = 1, . . . , p.

(C4), (C8).

(e) The covariates X,Z have finite kth moments, k = 1, . . . , 6. (C4), (C8).

(f) The first moment of logfj(s) exists for j = 1, . . . , p. (C6).

(g) m ≥ p and the matrix (u1, . . .um) has rank p. (C5), (C7).

B.3 Proof of Theorem 1

Because NPMLE for the linear transformation model in the mixture model setting

we consider can be cast into the general framework established in Zeng & Lin (2007),

we prove Theorem 1 through verifying the conditions (C1)-(C8) required by them.

Condition (a) ensures that the true parameter value is in the interior of a compact

set of the parameter space, with Conditions (c) and (d), we further guarantee the

differentiability and positivity of the hazard function. This leads to condition (C1)

of Zeng & Lin (2007).
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Condition (b) is equivalent to their (C2).

Condition (c) guarantees that (C3) of Zeng & Lin (2007) is satisfied.

Condition (C4) of Zeng & Lin (2007) is a type of Lipschitz condition, with respect

to both parameter and function; It is guaranteed by the stronger differentiability

conditions in our Condition (d) and and the moment conditions in (e).

Our Condition (g) is stated in their (C5).

Condition (C6) of Zeng & Lin (2007) requires sufficient smoothness and bound-

edness of the hazard functions and some functions derived from them, as do our

Conditions (c), (d) and (f).

Condition (C7) there is an identifiability condition that arises due to the generality

of the framework they consider; It is guaranteed to hold under our Condition (g) and

the parameterization requiring H(0) = −∞.

Condition (C8) of Zeng & Lin (2007) strengthen their (C4) to hold along each

path in a neighborhood of the true parameter value, while our Conditions (d) and (e)

are imposed for all the parameter values in a compact set jointly ensuring that this

holds.

B.4 Additional simulations

Our fourth simulation is the same as the first, except that the true transformation H

is log{t/(1 − t)}. In this case, the overall censoring rate is about 25%. The results

are in Table B.1 and Figure B.1.

Similarly, the fifth simulationis the same as the second but withH = log{t/(1−t)},

and an overall censoring rate of about 20%. The results are in Table B.1 and Figure

B.1.

The sixth simulation is the same as the third except that H = log{t/(1− t)}, with

an overall censoring rate of about 25%. The results are in Table B.1 and Figure B.1.
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Table B.1: Simulation results. Results based on 1000 simulations.

true mean median sd mean(ŝd) median(ŝd) 95% CI
simulation 4

β1 1.0000 0.9809 0.9776 0.4393 0.4605 0.4601 0.9650
β2 2.0000 1.9693 1.9565 0.3974 0.4088 0.4084 0.9540

simulation 5
α11 1.0000 0.9893 0.9986 0.6229 0.6363 0.6351 0.9590
α12 2.0000 1.9895 1.9988 0.5339 0.5552 0.5535 0.9550
α21 1.5000 1.4764 1.4410 1.1660 1.1346 1.1292 0.9530
α22 3.0000 2.9565 2.9681 0.9947 0.9971 0.9933 0.9460

simulation 6
β1 1.0000 0.9973 0.9914 0.2951 0.2982 0.2978 0.9590
β2 1.5000 1.5038 1.4982 0.1551 0.1569 0.1567 0.9590
α1 2.0000 1.8943 1.9186 0.7693 0.7955 0.7945 0.9510
α2 3.0000 3.0311 3.0257 0.3728 0.3609 0.3595 0.9560
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Figure B.1 True function (solid line), median estimation (dashed line), mean
estimation (dotted line) and 95% confidence band (dash-dotted line) of H(T ) in
simulations 4 (upper-left), 5 (upper-right), and 6 (lower) .
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Appendix C

Chapter 2 Appendix

C.1 Proof of Thoerem 1

Let β̂, γ̂ and ĝ(ZT
i γ̂, β̂), i = 1, . . . , n solve

0 = n−1/2
n∑
i=1
L{Yi,Si,Zi; β̂, ĝ(ZT

i γ̂, β̂)}.

Then we have

0 = n−1/2
n∑
i=1
L{Yi,Si,Zi; β̂, ĝ(ZT

i γ̂, β̂)}

= n−1/2
n∑
i=1
L{Yi,Si,Zi;β, ĝ(ZT

i γ,β)}+
[
n−1

n∑
i=1

∂L{Yi,Si,Zi;β, ĝ(ZT
i γ,β)}

∂βT

+n−1
n∑
i=1

∂L{Yi,Si,Zi;β, ĝ(ZT
i γ;β)}

∂ĝ(ZT
i γ;β)

∂ĝ(ZT
i γ;β)
∂βT

]∣∣∣∣
θ=θ∗

√
n(β̂ − β)

+n−1
n∑
i=1

∂L{Yi,Si,Zi;β, ĝ(ZT
i γ;β)}

∂ĝ(ZT
i γ;β)

∂ĝ(ZT
i γ;β)
∂γT

∣∣∣∣
θ=θ∗

√
n(γ̂ − γ)

= n−1/2
n∑
i=1
L{Yi,Si,Zi;β, ĝ(ZT

i γ;β)}+
{
E
[
∂L{Yi,Si,Zi;β, g(ZT

i γ;β)}
∂βT

+∂L{Yi,Si,Zi;β, g(ZT
i γ;β)}

∂g(ZT
i γ;β)

∂ĝ(ZT
i γ;β)
∂βT

]
+ op(1)

}√
n(β̂ − β)

+
{
E
[
∂L{Yi,Si,Zi;β, g(ZT

i γ;β)}
∂g(ZT

i γ;β)
∂ĝ(ZT

i γ;β)
∂γT

]
+ op(1)

}√
n(γ̂ − γ)

= n−1/2
n∑
i=1
L{Yi,Si,Zi;β, ĝ(Ui;β)}+

{
E
[
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂βT

+∂L{Yi,Si,Zi;β, g(Ui;β)}
∂g(Ui;β)

∂ĝ(Ui;β)
∂βT

]
+ op(1)

}√
n(β̂ − β)

+
{
E
[
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂g(Ui;β)
∂ĝ(Ui;β)
∂γT

]
+ op(1)

}√
n(γ̂ − γ) (C.1)
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where Ui = ZT
i γ. Because of the estimation process, we have

0 =
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}, (C.2)

at all u0 = zT
0 γ and all parameter values of β, say β∗. Thus, we have

0 = n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)

×
[
∂Φ{Yi,Si,Zi;β∗, ĝ(u0,β

∗) + ĝ′(u0,β
∗)(Ui − u0)}

∂β∗T

+∂Φ{Yi,Si,Zi;β∗, ĝ(u0;β∗) + ĝ′(u0,β
∗)(Ui − u0)}

∂{ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}
∂ĝ(u0;β∗)
∂β∗T

+∂Φ{Yi,Si,Zi;β∗, ĝ(u0,β
∗) + ĝ′(u0,β

∗)(Ui − u0)}
∂}ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}

∂ĝ′(u0;β∗)
∂β∗T

(Ui − u0)
]

at all β∗. Let fU(·) be the probability density function of U . Then

∂ĝ(u0;β)
∂β

= − E [∂Φ{Yi,Si,Zi;β, g(u0;β)}/∂β | Ui = u0]
E [∂Φ{Yi,Si,Zi;β, g(u0;β)}/∂g(u0;β) | Ui = u0] + op(1). (C.3)

On the other hand, we have

0 = n−1
n∑
i=1


1

(Ui − u0)/h


[
∂Kh(Ui − u0)
∂(Ui − u0) (Zi − z0)Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

+Kh(Ui − u0)∂Φ{Yi,Si,Zi;β, ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}
∂{ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}

∂ĝ(u0,β)
∂γ

+Kh(Ui − u0)∂Φ{Yi,Si,Zi;β, ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}
∂{ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}

×∂ĝ
′(u0,β)
∂γ

(Ui − u0)

+Kh(Ui − u0)∂Φ{Yi,Si,Zi;β, ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}
∂{ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}

×ĝ′(u0,β)(Zi − z0)
]T

−1

+n−1
n∑
i=1


01×(q−1)

(Zi − z0)T
−1

Kh(Ui − u0)Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}
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= n−1
n∑
i=1


1

(Ui − u0)/h


∂Kh(Ui − u0)
∂(Ui − u0) (Zi − z0)T

−1Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

+
{
E

 1

0

[∂Φ{Yi,Si,Zi;β, g(u0,β)}
∂g(u0,β) | Ui = u0

]}
∂ĝ(u0,β)
∂γT
−1

fU(u0)

+
{
E

 1

0

[∂Φ{Yi,Si,Zi;β, g(u0,β)}
∂g(u0,β) g′(u0,β)(Zi − z0)T

−1 | Ui = u0

]}
fU(u0)

+E
[

01×(q−1)

(Zi − z0)T
−1/h

Φ{Yi,Si,Zi;β, g(u0,β)} | Ui = u0

]
fU(u0) + op(1)

Now, to analyze the first term above, we introduce fU,Z−1(u, z−1) as the joint pdf of

U,Z−1. Note that fU,Z−1(u, z−1) = fZ(z) for u = γTz where γ is any parameter with

the first component 1. Then

n−1
n∑
i=1

∂Kh(Ui − u0)
∂(Ui − u0) (Zi − z0)T

−1Φ{Yi,Si,Zi;β, ĝ(u0,β) + ĝ′(u0,β)(Ui − u0)}

= n−1
n∑
i=1

h−2K ′{(Ui − u0)/h}(Zi − z0)T
−1Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

=
∫
h−2K ′{(u− u0)/h}(z− z0)T

−1Φ{y, s, u, z−1;β, g(u0,β) + g′(u0,β)(u− u0)}

×fU,Z−1,S,Y (u, z−1, s, y)dudz−1dsdy{1 + op(1)}

=
∫
h−1K ′(t)(z− z0)T

−1Φ{y, s, u0 + ht, z−1;β, g(u0,β) + g′(u0,β)ht}

×fU,Z−1,S,Y (u0 + ht, z−1, s, y)dtdz−1dsdy{1 + op(1)}

=
(∫

h−1K ′(t)(z− z0)T
−1Φ{y, s, u0, z−1;β, g(u0,β)}

× fU,Z−1,S,Y (u0, z−1, s, y)dtdz−1dsdy

+
∫
K ′(t)(z− z0)T

−1

[
∂Φ{y, s, u0, z−1;β, g(u0,β)}

∂u0
fU,Z−1,S,Y (u0, z−1, s, y)

+∂Φ{y, s, u0, z−1;β, g(u0,β)}
∂g(u0,β) g′(u0,β)fU,Z−1,S,Y (u0, z−1, s, y)
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+Φ{y, s, u0, z−1;β, g(u0,β)}∂fU,Z−1,S,Y (u0, z−1, s, y)
∂u0

]
tdtdz−1dsdy +Op(h)

)
×{1 + op(1)}

= −
(∫

(z− z0)T
−1

[
∂Φ{y, s, u0, z−1;β, g(u0,β)}

∂u0
fU,Z−1,S,Y (u0, z−1, s, y)

+∂Φ{y, s, u0, z−1;β, g(u0,β)}
∂g(u0,β) g′(u0,β)fU,Z−1,S,Y (u0, z−1, s, y)

+Φ{y, s, u0, z−1;β, g(u0,β)}∂fU,Z−1,S,Y (u0, z−1, s, y)
∂u0

]
dz−1dsdy +Op(h)

)
×{1 + op(1)}

= −

∫ (z− z0)T
−1
d
[
Φ{y, s, u0, z−1;β, g(u0,β)}fU,Z−1,S,Y (u0, z−1, s, y)

]
du0

dz−1dsdy

+Op(h))× {1 + op(1)}

= − d

du0

(∫
(z− z0)T

−1

[
Φ{y, s, u0, z−1;β, g(u0,β)}fU,Z−1,S,Y (u0, z−1, s, y)

]
dz−1dsdy) {1 + op(1)}+Op(h)

Continue from the last page, we have

= − d

du0
E((Z− z0)T

−1E[Φ{Y,S,Z;β, g(U,β)} | Z,S] | U = u0)

×{1 + op(1)}+Op(h)

= op(1),

where the last equality is because Φ has expectation zero conditional on S,Z. Further

n−1
n∑
i=1

(Ui − u0)/h∂Kh(Ui − u0)
∂(Ui − u0) (Zi − z0)T

−1Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

= n−1
n∑
i=1

h−1(Ui − u0)K ′{(Ui − u0)/h}(Zi − z0)T
−1Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

=
∫
h−1(Ui − u0)K ′{(u− u0)/h}(z− z0)T

−1Φ{y, s, u, z−1;β, g(u0,β)

+g′(u0,β)(u− u0)}

fU,Z−1,S,Y (u, z−1, s, y)dudz−1dsdy{1 + op(1)}
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=
∫
tK ′(t)(z− z0)T

−1Φ{y, s, u0 + ht, z−1;β, g(u0,β) + g′(u0,β)ht}

×fU,Z−1,S,Y (u0 + ht, z−1, s, y)dtdz−1dsdy{1 + op(1)}

=
(∫

tK ′(t)(z− z0)T
−1Φ{y, s, u0, z−1;β, g(u0,β)}

×fU,Z−1,S,Y (u0, z−1, s, y)dtdz−1dsdy
)
{1 + op(1)}+Op(h)

= −
(∫

(z− z0)T
−1Φ{y, s, u0, z−1;β, g(u0,β)}fU,Z−1,S,Y (u0, z−1, s, y)dz−1dsdy

)
×{1 + op(1)}+Op(h)

= −E((Z− z0)T
−1E[Φ{Y,S,Z;β, g(U,β)} | Z,S] | U = u0){1 + op(1)}+Op(h)

= op(1),

where the last equality is because Φ has expectation zero conditional on S,Z. Simi-

larly

E
[

01×(q−1)

(Zi − z0)T
−1/h

Φ{Yi,Si,Zi;β, g(u0,β)} | Ui = u0

]

= E
(

01×(q−1)

(Zi − z0)T
−1/h

E[Φ{Yi,Si,Zi;β, g(Ui,β)} | Si,Zi] | Ui = u0

)

= 0.

We thus obtain

0 =
{
E

 1

0

[∂Φ{Yi,Si,Zi;β, g(u0,β)}
∂g(u0,β) | Ui = u0

]}
∂ĝ(u0,β)
∂γT
−1

fU(u0)

+
{
E

 1

0

[∂Φ{Yi,Si,Zi;β, g(u0,β)}
∂g(u0,β) g′(u0,β)(Zi − z0)T

−1 | Ui = u0

]}
fU(u0)

+op(1).

Hence

∂ĝ(u0,β)
∂γ−1

= −E[(Zi − z0)−1∂Φ{Yi,Si,Zi;β, g(u0,β)}/∂g(u0,β)g′(u0,β) | Ui = u0]
E[∂Φ{Yi,Si,Zi;β, g(u0,β)}/∂g(u0,β) | Ui = u0]

+op(1) (C.4)
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Continue from (C.1) by inserting (C.3) and (C.4), this leads to

0 = n−1/2
n∑
i=1
L{Yi,Si,Zi;β, g(Ui;β)}+ n−1/2

n∑
i=1

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)

×{ĝ(Ui;β)− g(Ui;β)}+
{
E
(
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂βT

−∂L{Yi,Si,Zi;β, g(Ui;β)}
∂g(Ui;β)

E
[
∂Φ{Yj,Sj,Zj;β, g(Ui;β)}/∂βT | Ui

]
E [∂Φ{Yj,Sj,Zj;β, g(Ui;β)}/∂g(Ui;β) | Uj = Ui]

)
+op(1)

}√
n(β̂ − β)

−
{
E
(
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂g(Ui;β)
E[(Zj − Zi)T

−1∂Φ{Yj,Sj,Zj;β, g(Ui,β)}/∂g(Ui,β)g′(Ui,β) | Ui]
E[∂Φ{Yj,Sj,Zj;β, g(Ui,β)}/∂g(Ui,β) | Ui]

)
+op(1)

}√
n(γ̂ − γ) (C.5)

where g∗(u;β) lies on the line connecting g(u;β) and ĝ(u;β). Let g′∗(u0,β) be on

the line connecting ĝ′(u0,β) and g′(u0,β). We now rewrite (C.2) as

0 = n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, ĝ(u0,β)

+ĝ′(u0,β)(Ui − u0)}

= n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β)

+g′(u0,β)(Ui − u0)}

+
[
n−1

n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)

∂Φ{Yi,Si,Zi;β, g∗(u0;β) + g
′∗(u0;β)(Ui − u0)}

∂{g∗(u0;β) + g′∗(u0;β)(Ui − u0)}

]
{ĝ(u0;β)− g(u0;β)}

+
[
n−1

n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)(Ui − u0)

×∂Φ{Yi,Si,Zi;β, g∗(u0;β) + g
′∗(u0;β)(Ui − u0)}

∂{g∗(u0;β) + g′∗(u0;β)(Ui − u0)}

]
{ĝ′(u0;β)− g′(u0;β)},
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= n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β)

+g′(u0,β)(Ui − u0)}+

n−1
n∑
i=1


1 (Ui − u0)/h

(Ui − u0)/h (Ui − u0)2/h2

Kh(Ui − u0)

×∂Φ{Yi,Si,Zi;β, g∗(u0;β) + g
′∗(u0;β)(Ui − u0)}

∂{g∗(u0;β) + g′∗(u0;β)(Ui − u0)}

]

×

 ĝ(u0;β)− g(u0;β)

h{ĝ′(u0;β)− g′(u0;β)}



= n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β)

+g′(u0,β)(Ui − u0)}+
[ ∫

h−1


1 (u− u0)/h

(u− u0)/h (u− u0)2/h2

K
(
u− u0

h

)

×∂Φ{y, s, u, z−1;β, g(u0;β) + g′(u0,β)(u− u0)}
∂{g(u0;β) + g′(u0;β)(u− u0)}

×fU,Z−1,S,Y (u, z−1, s, y)dudz−1dsdy + op(1)
]  ĝ(u0;β)− g(u0;β)

h{ĝ′(u0;β)− g′(u0;β)}



= n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β)

+g′(u0,β)(Ui − u0)}+
[ ∫  1 t

t t2

K(t)

×∂Φ{y, s, u0 + th, z−1;β, g(u0;β) + g′(u0,β)th}
∂{g(u0;β) + g′(u0;β)th}

×fU,Z−1,S,Y (u0 + th, z−1, s, y)dtdz−1dsdy + op(1)
]  ĝ(u0;β)− g(u0;β)

h{ĝ′(u0;β)− g′(u0;β)}

 ,
where

∫
K(t)∂Φ{y, s, u0 + th, z−1;β, g(u0;β) + g′(u0,β)th}

∂{g(u0;β) + g′(u0;β)th}
×fU,Z−1,S,Y (u0 + th, z−1, s, y)dtdz−1dsdy
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=
∫
K(t)∂Φ{y, s, u0, z−1;β, g(u0;β)}

∂g(u0;β) fU,Z−1,S,Y (u0, z−1, s, y)dtdz−1dsdy +O(h2)

=
∫ ∂Φ{y, s, u0, z−1;β, g(u0;β)}

∂g(u0;β) fU,Z−1,S,Y (u0, z−1, s, y)dz−1dsdy +O(h2)

= E
[
∂Φ{Y,S, U,Z−1;β, g(U ;β)}

∂g(U ;β) | U = u0

]
fU(u0) +O(h2).

Similarly

∫
tK(t)∂Φ{y, s, u0 + th, z−1;β, g(u0;β) + g′(u0,β)th}

∂{g(u0;β) + g′(u0,β)th}
×fU,Z−1,S,Y (u0 + th, z−1, s, y)dtdz−1dsdy = O(h2),

and

∫
t2K(t)∂Φ{y, s, u0 + th, z−1;β, g(u0;β) + g′(u0,β)th}

∂{g(u0;β) + g′(u0,β)th}
×fU,Z−1,S,Y (u0 + th, z−1, s, y)dtdz−1dsdy

=
∫
t2K(t)∂Φ{y, s, u0, z−1;β, g(u0;β)}

∂g(u0;β) fU,Z−1,S,Y (u0, z−1, s, y)dtdz−1dsdy

+O(h4)

=
∫
µ2
∂Φ{y, s, u0, z−1;β, g(u0;β)}

∂g(u0;β) fU,Z−1,S,Y (u0, z−1, s, y)dz−1dsdy{1 +O(h2)}

= E
[
∂Φ{Y,S, U,Z−1;β, g(U ;β)}

∂g(U ;β) µ2 | U = u0

]
fU(u0){1 +Op(h2)}.

So

0 = n−1
n∑
i=1


1

(Ui − u0)/h

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β)

+g′(u0,β)(Ui − u0)}

+

E[∂Φ{Yi,Si,Zi;β, g(u0;β)}
∂g(u0;β) | Ui = u0

] 1 0

0 µ2

 fU(u0) + op(1)



×

 ĝ(u0;β)− g(u0;β)

h{ĝ′(u0;β)− g′(u0;β)}

 .
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Hence,

ĝ(u0;β)− g(u0;β)

= −
(
E

[
∂Φ{Yi,Si,Zi;β, g(u0;β)}

∂g(u0;β) | Ui = u0

]
fU(u0) + op(1)

)−1

×
[
n−1

n∑
i=1

Kh(Ui − u0)Φ{Yi,Si,Zi;β, g(u0;β) + g′(u0,β)(Ui − u0)}
]
.

Therefore

n−1/2
n∑
i=1

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β) {ĝ(Ui;β)− g(Ui;β)}

= −n−3/2
n∑

i,j=1
Kh(Uj − Ui)

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)[

E

{
∂Φ{Y,S,Z;β, g(U,β)}

∂g(U ;β) | U = Ui

}
fU(Ui) + op(1)

]−1

×Φ{Yj,Sj,Zj;β, g(Ui;β) + g′(Ui,β)(Uj − Ui)}. (C.6)

Note that, under the conditions (C1) and (C2),

n−1/2
n∑
j=1

E
{
Kh(Uj − Ui)

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)[

E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}
fU(Ui) + op(1)

]−1

×Φ{Yj,Sj,Zj;β, g(Ui;β) + g′(Ui,β)(Uj − Ui)} | Sj,Zj, Yj

}
= n−1/2

n∑
j=1

{
E
[
∂L{Y,S,Z;β, g∗(U ;β)}

∂g(U ;β) | U = Uj

]
[
E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Uj

}]−1
+ op(1)

}
Φ{Yj,Sj,Zj;β, g(Uj;β)},

and

n−1/2
n∑
i=1

E
{
Kh(Uj − Ui)

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)[

E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}
fU(Ui) + op(1)

]−1

×Φ{Yj,Sj,Zj;β, g(Ui;β) + g′(Ui,β)(Uj − Ui)} | Si,Zi, Yi

}
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= n−1/2
n∑
i=1

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)

[
E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}

fU(Ui) + op(1)
]−1

E [Kh(Uj − Ui)Φ{Yj,Sj,Zj;β, g(Ui;β)

+g′(Ui,β)(Uj − Ui)} | Si,Zi, Yi]

= n−1/2
n∑
i=1

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β)

[
E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}

fU(Ui) + op(1)
]−1 (

E [Φ{Y,S,Z;β, g(Ui;β)} | U = Ui] fU(Ui) +O(h2)
)

= Op(n1/2h2) = op(1).

Inserting these results to (C.6), in combination with U-statistic properties, we have

n−1/2
n∑
i=1

∂L{Yi,Si,Zi;β, g∗(Ui;β)}
∂g(Ui;β) {ĝ(Ui;β)− g(Ui;β)}

= −n−1/2
n∑
i=1

(
E
[
∂L{Y,S,Z;β, g∗(U ;β)}

∂g(U ;β) | U = Ui

]
[
E
{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}]−1
Φ{Yi,Si,Zi;β, g(Ui;β)}

)
+ op(1)

= −n−1/2
n∑
i=1

E

[
∂L{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

]
[
E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}]−1

Φ{Yi,Si,Zi;β, g(Ui;β)}+ op(1).

Continuing from (C.5), using the property that nh4 → 0, we obtain

0 = n−1/2
n∑
i=1

(
L{Yi,Si,Zi;β, g(Ui;β)} − E

[
∂L{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

]
[
E

{
∂Φ{Y,S,Z;β, g(U ;β)}

∂g(U ;β) | U = Ui

}]−1

Φ{Yi,Si,Zi;β, g(Ui;β)}


+
{
E
[
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂βT

−∂L{Yi,Si,Zi;β, g(Ui;β)}
∂g(Ui;β)

E
[
∂Φ{Yj,Sj,Zj;β, g(Ui;β)}/∂βT | Ui

]
E [∂Φ{Yj,Sj,Zj;β, g(Ui;β)}/∂g(Ui;β) | Ui]

]

+op(1)
}√

n(β̂ − β)−
{
E
[
∂L{Yi,Si,Zi;β, g(Ui;β)}

∂g(Ui;β)

×
E[(Zj − Zi)T

−1∂Φ{Yj,Sj,Zj;β, g(Ui,β)}/∂g(Ui,β)g′(Ui,β) | Ui]
E[∂Φ{Yj,Sj,Zj;β, g(Ui,β)}/∂{g(Ui,β)} | Ui]

]
+op(1)

}√
n(γ̂ − γ) + op(1).
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Table C.1: Simulation 1 results (link function: logit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 0.3 0.5 1.0 -0.3
ε: Normal distribution

α0 mean 0.3126 0.5085 1.0291 -0.2706
median 0.3003 0.5005 1.0008 -0.2957

se 0.1277 0.0750 0.1684 0.0798
OLS mean 1.0023 0.9993 0.3237 0.5063 1.0381 -0.2710

median 1.0026 1.0014 0.3005 0.5005 1.0010 -0.2946
se 0.0337 0.0461 0.1437 0.0729 0.1729 0.0750

WLS mean 0.9982 0.9996 0.3160 0.5067 1.0335 -0.2682
median 0.9983 1.0003 0.2997 0.5008 1.0013 -0.2935

se 0.0300 0.0421 0.1514 0.0709 0.1652 0.0768
ε: Student t distribution t5

α0 mean 0.3125 0.5037 1.0305 -0.2717
median 0.3004 0.5005 1.0008 -0.2961

se 0.1355 0.0704 0.1667 0.0714
OLS mean 1.0014 1.0003 0.3250 0.5041 1.0315 -0.2709

median 1.0007 1.0000 0.3006 0.5005 1.0008 -0.2954
se 0.0397 0.0544 0.1577 0.0694 0.1607 0.0711

WLS mean 0.9997 1.0002 0.3143 0.5090 1.0393 -0.2733
median 0.9985 1.0010 0.2995 0.5007 1.0017 -0.2961

se 0.0318 0.0473 0.1497 0.07132 0.1761 0.0717

This leads to the result stated in the theorem.
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Figure C.1 True function (black line), median estimation (gree line), mean
estimation (red line) and 95% confidence band (blue line) of g(u) in simulations 1
(upper-left), 2 (upper-right) and 3 (lower) when link function is inverse logit, ε is
normal distributed and with OLS method applied.
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Table C.2: Simulation 2 results (link function: logit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 0.3 0.2 0.3 -0.4
ε: Normal distribution

α0 mean 0.3276 0.1954 0.2978 -0.4011
median 0.3013 0.2000 0.3006 -0.3995

se 0.2583 0.0768 0.1216 0.1452
OLS mean 0.9991 0.9979 0.3318 0.1962 0.3018 -0.4010

median 0.9987 0.9985 0.3022 0.2002 0.3007 -0.3997
se 0.0319 0.0434 0.2493 0.0914 0.1133 0.1483

WLS mean 0.9990 0.9990 0.3416 0.1926 0.3004 -0.4062
median 0.9997 0.9974 0.3029 0.2004 0.3007 -0.3999

se 0.0295 0.0411 0.2146 0.0863 0.1211 0.1317
ε: Student t distribution t5

α0 mean 0.3243 0.1907 0.3062 -0.4017
median 0.3036 0.1996 0.3009 -0.3997

se 0.1601 0.0843 0.1209 0.1290
OLS mean 0.9997 1.0006 0.3330 0.1913 0.3080 -0.4085

median 0.9999 1.0008 0.3009 0.1998 0.3005 -0.3993
se 0.0376 0.0550 0.2461 0.0958 0.1190 0.1519

WLS mean 0.9979 1.0002 0.3258 0.1983 0.3029 -0.4050
median 0.9979 1.0000 0.3030 0.2003 0.3004 -0.4003

se 0.0324 0.0471 0.2153 0.0804 0.105 0.1175

Figure C.2 Plot of averaged baseline CD4 count versus screening CD4 count.
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Table C.3: Simulation 3 results (link function: logit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 0.3 0.5 1.0 -0.3
ε: Normal distribution

α0 mean 0.2616 0.5060 1.0506 -0.2467
median 0.2571 0.4997 1.0189 -0.2572

se 0.1041 0.0883 0.1749 0.0775
OLS mean 0.9988 0.9988 0.2666 0.5161 1.0624 -0.2500

median 0.9984 0.9994 0.2581 0.5017 1.0115 -0.2606
se 0.0344 0.0449 0.1292 0.1042 0.2111 0.0924

WLS mean 0.9998 0.9998 0.2625 0.5161 1.0717 -0.2499
median 1.0005 0.9983 0.2586 0.5011 1.0135 -0.2594

se 0.0296 0.0415 0.1143 0.1013 0.20575 0.0803
ε: Student t distribution t5

α0 mean 0.2642 0.5114 1.0616 -0.2481
median 0.2579 0.5003 1.0216 -0.2612

se 0.1133 0.0982 0.1893 0.0817
OLS mean 1.0017 0.9995 0.2613 0.5178 1.0709 -0.2530

median 1.0010 0.9989 0.2552 0.5013 1.0220 -0.2624
se 0.0395 0.0556 0.1199 0.1134 0.2112 0.0990

WLS mean 0.9981 1.0003 0.2560 0.5127 1.0658 -0.2487
median 0.9979 0.9990 0.2496 0.4999 1.0129 -0.2571

se 0.0329 0.0480 0.1089 0.0955 0.2046 0.0818
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Table C.4: Simulation 1 results (link function: probit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 1.0 0.5 1.0 0.3
ε: Normal distribution

α0 mean 1.0611 0.5080 1.0845 0.3365
median 0.9916 0.4999 1.0251 0.3114

se 0.2825 0.0894 0.1881 0.0788
OLS mean 0.9989 0.9993 1.0788 0.5089 1.0874 0.3363

median 0.9992 0.9998 0.9980 0.4996 1.0298 0.3111
se 0.0340 0.0444 0.2905 0.09074 0.1922 0.0808

WLS mean 1.0001 1.0004 1.0759 0.5060 1.0736 0.3347
median 0.9995 1.0009 1.0084 0.4993 1.0292 0.3120

se 0.0313 0.0409 0.2462 0.0765 0.1616 0.0724
ε: Student t distribution t5

α0 mean 1.0591 0.5073 1.0917 0.3374
median 0.9846 0.4981 1.0350 0.3131

se 0.2986 0.0867 0.1907 0.0792
OLS mean 1.0010 0.9986 1.0641 0.5083 1.0901 0.3351

median 1.0004 0.9985 0.9931 0.4984 1.0305 0.3103
se 0.0385 0.0568 0.2948 0.0908 0.1891 0.0772

WLS mean 1.0000 1.0022 1.0669 0.5058 1.0751 0.3365
median 1.0004 1.0030 1.0110 0.4995 1.0230 0.3147

se 0.0342 0.0473 0.2510 0.0762 0.1609 0.0728
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Table C.5: Simulation 2 results (link function: probit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 0.3 0.2 0.3 -0.4
ε: Normal distribution

α0 mean 0.3746 0.1891 0.3032 -0.4081
median 0.3113 0.1997 0.3009 -0.4009

se 0.1986 0.0657 0.0914 0.0945
OLS mean 1.0006 0.9980 0.3828 0.1951 0.3011 -0.4049

median 0.9998 0.9986 0.3115 0.2002 0.3008 -0.4006
se 0.0325 0.0449 0.2322 0.0656 0.0979 0.1081

WLS mean 0.9997 1.0004 0.3798 0.1935 0.3022 -0.4103
median 1.0002 1.0007 0.3158 0.1997 0.3014 -0.4006

se 0.0294 0.0412 0.1881 0.0602 0.0757 0.0892
ε: Student t distribution t5

α0 mean 0.3760 0.1934 0.3060 -0.4085
median 0.3087 0.2001 0.3010 -0.4013

se 0.2084 0.0635 0.0793 0.1001
OLS mean 0.9983 1.0003 0.4009 0.1963 0.3002 -0.4065

median 0.9992 1.0016 0.3127 0.2005 0.3003 -0.4016
se 0.0371 0.0548 0.2514 0.0672 0.0867 0.1037

WLS mean 0.9978 1.0009 0.3740 0.1967 0.3027 -0.4144
median 0.9985 1.0005 0.3105 0.2002 0.3012 -0.4028

se 0.0330 0.0477 0.1973 0.0577 0.0812 0.0946
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Table C.6: Simulation 3 results (link function: probit)
α1 α2 β γ2 γ3 γ4

truth 1.0 1.0 0.3 0.5 1.0 -0.3
ε: Normal distribution

α0 mean 0.2744 0.5108 1.0560 -0.2502
median 0.2594 0.5011 1.0200 -0.2613

se 0.1228 0.0828 0.1773 0.0783
OLS mean 1.0003 0.9987 0.2776 0.5077 1.0545 -0.2507

median 0.9998 1.0002 0.2624 0.5011 1.0216 -0.2628
se 0.0331 0.0453 0.0692 0.0833 0.1737 0.0784

WLS mean 0.9988 0.9990 0.2763 0.5091 1.0473 -0.2503
median 0.9991 0.9979 0.2651 0.50015 1.0149 -0.2609

se 0.033 0.0470 0.1291 0.0808 0.1787 0.0792
ε: Student t distribution t5

α0 mean 0.2627 0.5065 1.0549 -0.2531
median 0.2566 0.5002 1.0222 -0.2659

se 0.0904 0.0776 0.1600 0.0784
OLS mean 1.0008 0.9987 0.2721 0.5066 1.0540 -0.2502

median 1.0007 0.9995 0.2604 0.5005 1.0120 -0.2606
se 0.0378 0.0554 0.1181 0.0805 0.1785 0.0817

WLS mean 1.0008 0.9990 0.2749 0.5093 1.0549 -0.2569
median 1.0006 0.9994 0.2602 0.5005 1.0170 -0.2687

se 0.0331 0.0462 0.1330 0.0800 0.1738 0.0795

Table C.7: Realdata analysis results
β γ1 γ2 γ3 γage

realdata estimates -0.72808 1.0 1.511 2.4915 -2.3035
bootstrapped mean -0.7219 1.7897 2.6411 -2.3819

bootstrapped median -0.7082 1.6383 2.5455 -2.3029
bootstrapped se 0.1274 0.3737 0.2919 0.41061

95% CI (-0.9779,-0.4783) (0.8186,2.2836) (1.9194,3.0636) (-3.0996,-1.5075)
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Figure C.3 Estimated g(u) for real data (black line), median estimation (green
line), mean estimation (red line) and 90% confidence band (blue line) of g(u) using
1000 bootstrapped samples .
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Appendix D

Chapter 3 Appendix

D.1 Proof of Thoerem 3

From the definitions of S∗eff (Yi,Wi,Zi, δ, g) and Sres
∗
2(Yi,Wi,Zi, δ,γ), we have

E{S∗eff (Yi,Wi,Zi, δ0, g)|Xi,Zi} = 0,

Ea{Sres
∗
2(Yi,Wi,Zi, δ0,γ0)|Xi,Zi} = 0,

where a here and throughout the text stands for “approximate”, and Ea indicates the

expectation calculated with g(·) replaced by the approximate model B(·)Tγ0. Taking

another expectation, we get

E{S∗eff (Yi,Wi,Zi, δ0, g)} = 0,

Ea{Sres
∗
2(Yi,Wi,Zi, δ0,γ0)} = 0.

Using Condition (C6), we further get

E{S∗eff (Yi,Wi,Zi, δ0,γ0)} = o(1),

E{Sres
∗
2{Yi,Wi,Zi, δ0,γ0)} = o(1),

component-wise. Condition (C7) ensures that [E{S∗eff (Yi,Wi,Zi, δ,γ)}T, E{Sres
∗
2(Yi,

Wi,Zi, δ,γ)}T]T is invertible near its zero θ∗ as a vector function of θ, and the first

derivative of the inverse function is bounded in the neighborhood of θ∗. Therefore,

‖θ∗ − θ0‖2 = op(1). On the other hand, since

1
n

n∑
i=1

S∗eff (Yi,Wi,Zi, δ̂n, γ̂n) = 0,

1
n

n∑
i=1

Sres
∗
2(Yi,Wi,Zi, δ̂n, γ̂n) = 0,
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we have

E{S∗eff (Yi,Wi,Zi, δ̂n, γ̂n)} = o(1),

E{Sres
∗
2(Yi,Wi,Zi, δ̂n, γ̂n)} = o(1)

element-wise. Using exactly the same argument as above, we can also obtain ‖θ̂n −

θ∗‖2 = op(1). Hence combining the two results, we get ‖θ̂n − θ0‖2 = op(1).

D.2 Proof of Theorem 4

We first write

0 = n−1/2
n∑
i=1

S∗eff{Yi,Wi,Zi, δ̂n, γ̂n(δ̂n)}

= T1 + T2(δ̃n)
√
n(δ̂n − δ0),

where

T1 = 1√
n

n∑
i=1

S∗eff{Yi,Wi,Zi, δ0, γ̂n(δ0)},

T2(δ) = T21(δ) + T22(δ)∂γ̂n(δ)
∂δT ,

where

T21(δ) = 1
n

n∑
i=1

∂S∗eff (Yi,Wi,Zi, δ, γ̂n)
∂δT ,

T22(δ) = 1
n

n∑
i=1

∂S∗eff{Yi,Wi,Zi, δ, γ̂n(δ)}
∂γ̂n(δ)T ,

and δ̃n is on the line connecting δ0 and δ̂n.

We further expand T1 as a function of γ̂n(δ0) about γ0(δ0) to obtain

T1 = T11 + T12{γ̃n(δ0)}
√
n{γ̂n(δ0)− γ0(δ0)},

where

T11 = 1√
n

n∑
i=1

S∗eff{Yi,Wi,Zi, δ0,γ0(δ0)},

T12{γ(δ0)} = 1
n

n∑
i=1

∂S∗eff{Yi,Wi,Zi, δ0,γ(δ0)}
∂γ(δ0)T ,
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and γ̃n(δ0) is on the line connects γ̂n(δ0) and γ0(δ0).

Because of the consistency of B(x)Tγ̃n to g(x) derived from Condition (C6) and

Theorem 3, and the weak law of large numbers, for arbitrary dγ × p matrix G with

‖G‖2 = 1, we have

T12{γ̃n(δ0)}G = E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂γT G


B(·)Tγ=g(·)

 {1 + op(1)},

where

E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂γT G


B(·)Tγ=g(·)


=

∫ ∂S∗eff (yi, wi, zi, δ0,γ)
∂γT G


B(·)Tγ=g(·)

 f(yi, wi, zi, δ0, g, fX)dyidwidzi

=
∫ {

∂S∗eff (yi, wi, zi, δ0,γ0)
∂γT

0
G +Op(hqb)

}
{f(yi, wi, zi, δ0,γ0, fX)

+Op(hqb)} dyidwidzi

=
∫ ∂S∗eff (yi, wi, zi, δ0,γ0)

∂γT
0

Gf(yi, wi, zi, δ0,γ0, fX)dyidwidzi +Op(hqb)

= ∂

∂γT
0

∫
{S∗eff (yi, wi, zi, δ0, g) +OP (hqb)}G{f(yi, wi, zi, β0, g, fX)

+Op(hqb)}dyidwidzi

−
∫
{S∗eff (yi, wi, zi, δ0, g) +OP (hqb)}G

∂f(yi, wi, zi, δ0,γ0, fX)
∂γT

0
dyidwidzi

+OP (hqb)

= −
∫

S∗eff (yi, wi, zi, δ0, g)
{
GTSa,γ(yi, wi, zi, δ0,γ0)

}T

f(yi, wi, zi, δ0, g, fX)dyidwidzi +Op(hpb)

= Op(hqb). (D.1)

Here, like before, f(yi, wi, zi, δ0,γ, fX) stands for f(yi, wi, zi, δ0, g, fX) with g(·) re-

placed by B(·)Tγ, and Sa,γ(yi, wi, zi, δ0,γ0) ≡ ∂logf(yi, wi, zi, δ0,γ, fX)/∂γ. The

second equality holds by condition (C6). The third equality holds because ‖∂S∗eff (yi,

wi, zi, δ0,γ0)/∂γT
0 ‖∞ is integrable by condition (C8) and f(yi, wi, zi, δ0,γ0, fX) is

absolutely integrable. The fourth equality holds also by condition (C6). The fifth
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equality holds because E{S∗eff (yi, wi, zi, δ, g)} = 0. For the last equality, we note

that GTSa,γ(yi, wi, zi, δ0,γ0) = E[s{yi, zT
i β0 + B(X)Tγ0,α0}GTB(X) | yi, wi, zi].

By Condition (C6) and definitions of Λg and Λa,γ , for any dγ × p matrix G, there

exists a function h(yi, wi, zi, δ0, g) ≡ E[s{yi, zT
i β0 + g(X),α0}GTB(X) | yi, wi, zi] ∈

Λg such that sup |GTSa,γ(yi, wi, zi, δ0,γ0) − h(yi, wi, zi, δ0, g)| = OP (hqb). Further,

S∗eff (yi, wi, zi, δ0, g) is orthogonal to any function in Λg, thus the last equality holds.

Hence, we obtain ‖T12{γ̃(δ0)}‖2 = Op(hqb).

Based on the asymptotic results of Proposition 4 in Jiang & Ma (2017), we have

‖γ̂n(δ0)− γ0(δ0)‖2 = Op{(nhb)−1/2}. Then we have

‖T12{γ̃n(δ0)}
√
n{γ̂n(δ0)− γ0(δ0)}‖2 = Op(hq−1/2

b ).

Further, by (C6) we have T11 = n−1/2∑n
i=1 S∗eff (Yi,Wi,Zi, δ0, g) + Op(n1/2hqb).

Since hq−1/2
b = op(n1/2hqb), and n1/2hqb = op(1) by conditions (C4) and (C5), then

T1 = n−1/2
n∑
i=1

S∗eff (Yi,Wi,Zi, δ0, g) + op(1). (D.2)

We next consider each term in T2(δ̃n). Since γ̂n(·) satisfies n−1∑n
i=1 Sres

∗
2{Yi,Wi,

Zi, δ, γ̂n(δ)} = 0 for any δ,

1
n

n∑
i=1

∂Sres
∗
2(Yi,Wi,Zi, δ, γ̂n)

∂δT + 1
n

n∑
i=1

∂Sres
∗
2{Yi,Wi,Zi, , δ, γ̂n(δ)}

∂γ̂n(δ)T
∂γ̂n(δ)
∂δT = 0.

Then

∂γ̂n(δ)
∂δT = −{T23(δ)}−1T24(δ),

where

T23(δ) = 1
n

n∑
i=1

∂Sres
∗
2{Yi,Wi,Zi, , δ, γ̂n(δ)}

∂γ̂n(δ)T ,

T24(δ) = 1
n

n∑
i=1

∂Sres
∗
2(Yi,Wi,Zi, δ, γ̂n)

∂δT .

Hence

T2(δ̃n) = T21(δ̃n)−T22(δ̃n){T23(δ̃n)}−1T24(δ̃n).
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By the consistency of δ̃n to δ0 and B(x)Tγ̂n to g(x), we have

T21(δ̃n) = E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂δT

0


B(·)Tγ=g(·)

 {1 + op(1)},

and

T24(δ̃n) = E

∂Sres
∗
2(Yi,Wi,Zi, δ0,γ)

∂δT
0


B(·)Tγ=g(·)

 {1 + op(1)}.

From (D.1), we also have

T22(δ̃n) = E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂γT


B(·)Tγ=g(·)

 {1 + op(1)} = Op(hqb).

Based on the proof of Proposition 4 in Jiang & Ma (2017), we have ‖T23(δ̃n)−1‖2 =

Op(h−1
b ). Therefore we have T22(δ̃n){T23(δ̃n)}−1T24(δ̃n) = Op(hq−1

b ), where q > 1 by

condition (C2). Thus

T2(δ̃n) = E

∂S∗eff (Yi,Wi,Zi, δ0,γ)
∂δT

0


B(·)Tγ=g(·)

 {1 + op(1)}+O(hq−1
b ).

Therefore,

√
n(δ̂n − δ0)

= −

E
∂S∗eff (Yi,Wi,Zi, δ0,γ)

∂δT
0


B(·)Tγ=g(·)


−1

1√
n

n∑
i=1

S∗eff (Yi,Wi,Zi, δ0, g)

+op(1).

Since n−1/2∑n
i=1 S∗eff (Yi,Wi,Zi, δ0, g) is the sum of zero-mean random vectors, this

will converge in distribution to a multivariate normal distribution with mean 0 and

covariance matrix V given in Theorem 4.
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Table D.1: Simulation results under a correct working model
β1 β2 β3 β4

truth 1.0 0.5 1.0 -0.3
Simulation 1 mean 1.0183 0.5096 1.0106 -0.3103

median 1.0125 0.5075 1.010 -0.3086
se 0.0955 0.0817 0.1231 0.0792
mse 0.0095 0.0068 0.0153 0.0064

Simulation 2 mean 1.0177 0.5052 1.0074 -0.3051
median 1.0136 0.5043 1.0068 -0.3029

se 0.0858 0.0467 0.0917 0.0425
mse 0.0077 0.0022 0.0085 0.0018

Table D.2: Simulation results under a misspecified working model
β1 β2 β3 β4

truth 1.0 0.5 1.0 -0.3
Simulation 1 mean 1.0145 0.5122 1.0147 -0.3100

median 1.0113 0.5117 1.0172 -0.3087
se 0.0941 0.0823 0.1240 0.0822
mse 0.0091 0.0069 0.0156 0.0069

Simulation 2 mean 1.0149 0.5051 1.0063 -0.3035
median 1.0083 0.5038 1.0059 -0.3017

se 0.0762 0.0463 0.0882 0.0320
mse 0.0060 0.0022 0.0078 0.0010

Table D.3: Realdata analysis results
β1 β2 β3

estimates -0.8076 -1.0970 -0.5150
bootstrap mean -0.7876 -1.1012 -0.4896
bootstrap median -0.7770 -1.0953 -0.4827

bootstrap se 0.3575 0.3133 0.2947
P-value 0.0239 <0.0001 0.0805
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Figure D.1 True function (black line), median estimation (green line), mean
estimation (red line) and 90% confidence band (blue line) of g(x) in simulation 1.
Correct working model on the left and misspecified working model on the right.

Figure D.2 True function (black line), median estimation (green line), mean
estimation (red line) and 90% confidence band (blue line) of g(x) in simulation 2.
Correct working model on the left and misspecified working model on the right.

84



www.manaraa.com

Figure D.3 Estimated g(x) for real data (black line), median estimation (green
line), mean estimation (red line) and 90% confidence band (blue line) of g(x) from
1000 bootstrapped samples.
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